Martijn J. van Hemert
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martijn J. van Hemert.
PLOS Pathogens | 2008
Martijn J. van Hemert; Sjoerd H. E. van den Worm; Kèvin Knoops; A. Mieke Mommaas; Alexander E. Gorbalenya; Eric J. Snijder
SARS-coronavirus (SARS-CoV) replication and transcription are mediated by a replication/transcription complex (RTC) of which virus-encoded, non-structural proteins (nsps) are the primary constituents. The 16 SARS-CoV nsps are produced by autoprocessing of two large precursor polyproteins. The RTC is believed to be associated with characteristic virus-induced double-membrane structures in the cytoplasm of SARS-CoV-infected cells. To investigate the link between these structures and viral RNA synthesis, and to dissect RTC organization and function, we isolated active RTCs from infected cells and used them to develop the first robust assay for their in vitro activity. The synthesis of genomic RNA and all eight subgenomic mRNAs was faithfully reproduced by the RTC in this in vitro system. Mainly positive-strand RNAs were synthesized and protein synthesis was not required for RTC activity in vitro. All RTC activity, enzymatic and putative membrane-spanning nsps, and viral RNA cosedimented with heavy membrane structures. Furthermore, the pelleted RTC required the addition of a cytoplasmic host factor for reconstitution of its in vitro activity. Newly synthesized subgenomic RNA appeared to be released, while genomic RNA remained predominantly associated with the RTC-containing fraction. RTC activity was destroyed by detergent treatment, suggesting an important role for membranes. The RTC appeared to be protected by membranes, as newly synthesized viral RNA and several replicase/transcriptase subunits were protease- and nuclease-resistant and became susceptible to degradation only upon addition of a non-ionic detergent. Our data establish a vital functional dependence of SARS-CoV RNA synthesis on virus-induced membrane structures.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Yanhua Li; Emmely E. Treffers; Sawsan Napthine; Ali Tas; Longchao Zhu; Zhi Sun; Susanne Bell; Brian L. Mark; Peter A. van Veelen; Martijn J. van Hemert; Andrew E. Firth; Ian Brierley; Eric J. Snijder; Ying Fang
Significance Ribosomes synthesize proteins by translating mRNAs into linear chains of amino acids through the decoding of consecutive nucleotide triplets (codons). Specific mRNA signals, however, can stimulate ribosomes to shift into an alternative triplet reading frame (ribosomal frameshifting) resulting in translation of a different protein. Typically, such signals are regions of intramolecular nucleotide base-pairing in the mRNA which form structures that stall ribosome progress. Here we show that the frameshifting signal used to express the nsp2TF and nsp2N proteins of porcine reproductive and respiratory syndrome virus, an important swine pathogen, requires the action of a transacting viral protein rather than a structured RNA. This novel mechanism of gene expression may also be used by other viruses or in cellular gene expression. Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.
Journal of Antimicrobial Chemotherapy | 2014
Leen Delang; Nidya Segura Guerrero; Ali Tas; Gilles Querat; Boris Pastorino; Mathy Froeyen; Kai Dallmeier; Dirk Jochmans; Piet Herdewijn; Felio Bello; Eric J. Snijder; Xavier de Lamballerie; Byron E. E. Martina; Johan Neyts; Martijn J. van Hemert; Pieter Leyssen
OBJECTIVES T-705, also known as favipiravir, is a small-molecule inhibitor that is currently in clinical development for the treatment of influenza virus infections. This molecule also inhibits the replication of a broad spectrum of other RNA viruses. The objective of this study was to investigate the antiviral effect of favipiravir on chikungunya virus (CHIKV) replication and to contribute to unravelling the molecular mechanism of action against this virus. METHODS The anti-CHIKV effect of favipiravir was examined in cell culture and in a mouse model of lethal infection. A five-step protocol was used to select for CHIKV variants with reduced susceptibility to favipiravir. The resistant phenotype was confirmed in cell culture and the whole genome was sequenced. The identified mutations were reverse-engineered into an infectious clone to confirm their impact on the antiviral efficacy of favipiravir. RESULTS Favipiravir inhibits the replication of laboratory strains and clinical isolates of CHIKV, as well as of a panel of other alphaviruses. Several favipiravir-resistant CHIKV variants were independently selected and all of them in particular acquired the unique K291R mutation in the RNA-dependent RNA polymerase (RdRp). Reverse-engineering of this K291R mutation into an infectious clone of CHIKV confirmed the link between the mutant genotype and the resistant phenotype. Interestingly, this particular lysine is also highly conserved in the RdRp of positive-stranded RNA viruses in general. CONCLUSIONS This study provides an important insight into the precise molecular mechanism by which favipiravir exerts its antiviral activity against (alpha)viruses, which may be of help in designing other potent broad-spectrum antivirals.
Journal of Virology | 2014
David Olagnier; Florine E. M. Scholte; Cindy Chiang; Irina C. Albulescu; Carmen N. Nichols; Zhong He; Rongtuan Lin; Eric J. Snijder; Martijn J. van Hemert; John Hiscott
ABSTRACT RIG-I is a cytosolic sensor critically involved in the activation of the innate immune response to RNA virus infection. In the present study, we evaluated the inhibitory effect of a RIG-I agonist on the replication of two emerging arthropod-borne viral pathogens, dengue virus (DENV) and chikungunya virus (CHIKV), for which no therapeutic options currently exist. We demonstrate that when a low, noncytotoxic dose of an optimized 5′triphosphorylated RNA (5′pppRNA) molecule was administered, RIG-I stimulation generated a robust antiviral response against these two viruses. Strikingly, 5′pppRNA treatment before or after challenge with DENV or CHIKV provided protection against infection. In primary human monocytes and monocyte-derived dendritic cells, the RIG-I agonist blocked both primary infection and antibody-dependent enhancement of DENV infection. The protective response against DENV and CHIKV induced by 5′pppRNA was dependent on an intact RIG-I/MAVS/TBK1/IRF3 axis and was largely independent of the type I IFN response. Altogether, this in vitro analysis of the antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV. IMPORTANCE DENV and CHIKV are two reemerging mosquito-borne viruses for which no therapeutic options currently exist. Both viruses overlap geographically in tropical regions of the world, produce similar fever-like symptoms, and are difficult to diagnose. This study investigated the inhibitory effect of a RIG-I agonist on the replication of these two viruses. RIG-I stimulation using 5′pppRNA before or after DENV or CHIKV infection generated a protective antiviral response against both pathogens in immune and nonimmune cells; interestingly, the protective response against the viruses was largely independent of the classical type I interferon response. The antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV.
Journal of Virology | 2015
Florine E. M. Scholte; Ali Tas; Irina C. Albulescu; Eva Žusinaite; Andres Merits; Eric J. Snijder; Martijn J. van Hemert
ABSTRACT Stress granules (SGs) are protein-mRNA aggregates that are formed in response to environmental stresses, resulting in translational inhibition. SGs are generally believed to play an antiviral role and are manipulated by many viruses, including various alphaviruses. GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) is a key component and commonly used marker of SGs. Its homolog G3BP2 is a less extensively studied SG component. Here, we demonstrate that Chikungunya virus (CHIKV) infection induces cytoplasmic G3BP1- and G3BP2-containing granules that differ from bona fide SGs in terms of morphology, composition, and behavior. For several Old World alphaviruses it has been shown that nonstructural protein 3 (nsP3) interacts with G3BPs, presumably to inhibit SG formation, and we have confirmed this interaction in CHIKV-infected cells. Surprisingly, CHIKV also relied on G3BPs for efficient replication, as simultaneous depletion of G3BP1 and G3BP2 reduced viral RNA levels, CHIKV protein expression, and viral progeny titers. The G3BPs colocalized with CHIKV nsP2 and nsP3 in cytoplasmic foci, but no colocalization with nsP1, nsP4, or dsRNA was observed. Furthermore, G3BPs could not be detected in a cellular fraction enriched for CHIKV replication/transcription complexes, suggesting that they are not directly involved in CHIKV RNA synthesis. Depletion of G3BPs did not affect viral entry, translation of incoming genomes, or nonstructural polyprotein processing but resulted in severely reduced levels of negative-stranded (and consequently also positive-stranded) RNA. This suggests a role for the G3BPs in the switch from translation to genome amplification, although the exact mechanism by which they act remains to be explored. IMPORTANCE Chikungunya virus (CHIKV) causes a severe polyarthritis that has affected millions of people since its reemergence in 2004. The lack of approved vaccines or therapeutic options and the ongoing explosive outbreak in the Caribbean underline the importance of better understanding CHIKV replication. Stress granules (SGs) are cytoplasmic protein-mRNA aggregates formed in response to various stresses, including viral infection. The RNA-binding proteins G3BP1 and G3BP2 are essential SG components. SG formation and the resulting translational inhibition are generally considered an antiviral response, and many viruses manipulate or block this process. Late in infection, we and others have observed CHIKV nonstructural protein 3 in cytoplasmic G3BP1- and G3BP2-containing granules. These virally induced foci differed from true SGs and did not appear to represent replication complexes. Surprisingly, we found that G3BP1 and G3BP2 were also needed for efficient CHIKV replication, likely by facilitating the switch from translation to genome amplification early in infection.
Journal of General Virology | 2011
Adriaan H. de Wilde; Jessika C. Zevenhoven-Dobbe; Yvonne van der Meer; Volker Thiel; Krishna Narayanan; Shinji Makino; Eric J. Snijder; Martijn J. van Hemert
Low micromolar, non-cytotoxic concentrations of cyclosporin A (CsA) strongly affected the replication of severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus 229E and mouse hepatitis virus in cell culture, as was evident from the strong inhibition of GFP reporter gene expression and a reduction of up to 4 logs in progeny titres. Upon high-multiplicity infection, CsA treatment rendered SARS-CoV RNA and protein synthesis almost undetectable, suggesting an early block in replication. siRNA-mediated knockdown of the expression of the prominent CsA targets cyclophilin A and B did not affect SARS-CoV replication, suggesting either that these specific cyclophilin family members are dispensable or that the reduced expression levels suffice to support replication.
Journal of Biological Chemistry | 2008
Martijn J. van Hemert; Adriaan H. de Wilde; Alexander E. Gorbalenya; Eric J. Snijder
The cytoplasmic replication of positive-stranded RNA viruses is associated with characteristic, virus-induced membrane structures that are derived from host cell organelles. We used the prototype arterivirus, equine arteritis virus (EAV), to gain insight into the structure and function of the replication/transcription complex (RTC) of nidoviruses. RTCs were isolated from EAV-infected cells, and their activity was studied using a newly developed in vitro assay for viral RNA synthesis, which reproduced the synthesis of both viral genome and subgenomic mRNAs. A detailed characterization of this system and its reaction products is described. RTCs isolated from cytoplasmic extracts by differential centrifugation were inactive unless supplemented with a cytosolic host protein factor, which, according to subsequent size fractionation analysis, has a molecular mass in the range of 59–70 kDa. This host factor was found to be present in a wide variety of eukaryotes. Several EAV replicase subunits cosedimented with newly made viral RNA in a heavy membrane fraction that contained all RNA-dependent RNA polymerase activity. This fraction contained the characteristic double membrane vesicles (DMVs) that were previously implicated in EAV RNA synthesis and could be immunolabeled for EAV nonstructural proteins (nsps). Replicase subunits directly involved in viral RNA synthesis (nsp9 and nsp10) or DMV formation (nsp2 and nsp3) exclusively cosedimented with the active RTC. Subgenomic mRNAs appeared to be released from the complex, whereas newly made genomic RNA remained more tightly associated. Taken together, our data strongly support a link between DMVs and the RNA-synthesizing machinery of arteriviruses.
PLOS Pathogens | 2010
Aartjan J. W. te Velthuis; Sjoerd H. E. van den Worm; Amy C. Sims; Ralph S. Baric; Eric J. Snijder; Martijn J. van Hemert
Increasing the intracellular Zn2+ concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn2+ and PT at low concentrations (2 µM Zn2+ and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV—thus eliminating the need for PT to transport Zn2+ across the plasma membrane—we show that Zn2+ efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn2+ directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn2+ was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn2+ with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.
Journal of Bacteriology | 2001
Fernando Rodrigues; Martijn J. van Hemert; H. Yde Steensma; Manuela Côrte-Real; Cecı́la Leão
We describe the utilization of a red fluorescent protein (DsRed) as an in vivo marker for Saccharomyces cerevisiae. Clones expressing red and/or green fluorescent proteins with both cytoplasmic and nuclear localization were obtained. A series of vectors are now available which can be used to create amino-terminal (N-terminal) and carboxyl-terminal (C-terminal) fusions with the DsRed protein.
PLOS ONE | 2013
Florine E. M. Scholte; Ali Tas; Byron E. E. Martina; Paolo Cordioli; Krishna Narayanan; Shinji Makino; Eric J. Snijder; Martijn J. van Hemert
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that re-emerged in 2004 and has caused massive outbreaks in recent years. The lack of a licensed vaccine or treatment options emphasize the need to obtain more insight into the viral life cycle and CHIKV-host interactions. Infectious cDNA clones are important tools for such studies, and for mechanism of action studies on antiviral compounds. Existing CHIKV cDNA clones are based on a single genome from an individual clinical isolate, which is expected to have evolved specific characteristics in response to the host environment, and possibly also during subsequent cell culture passaging. To obtain a virus expected to have the general characteristics of the recent E1-226V CHIKV isolates, we have constructed a new CHIKV full-length cDNA clone, CHIKV LS3, based on the consensus sequence of their aligned genomes. Here we report the characterization of this synthetic virus and a green fluorescent protein-expressing variant (CHIKV LS3-GFP). Their characteristics were compared to those of natural strain ITA07-RA1, which was isolated during the 2007 outbreak in Italy. In cell culture the synthetic viruses displayed phenotypes comparable to the natural isolate, and in a mouse model they caused lethal infections that were indistinguishable from infections with a natural strain. Compared to ITA07-RA1 and clinical isolate NL10/152, the synthetic viruses displayed similar sensitivities to several antiviral compounds. 3-deaza-adenosine was identified as a new inhibitor of CHIKV replication. Cyclosporin A had no effect on CHIKV replication, suggesting that cyclophilins -opposite to what was found for other +RNA viruses- do not play an essential role in CHIKV replication. The characterization of the consensus sequence-based synthetic viruses and their comparison to natural isolates demonstrated that CHIKV LS3 and LS3-GFP are suitable and representative tools to study CHIKV-host interactions, screen for antiviral compounds and unravel their mode of action.