Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martijn L. Chatrou is active.

Publication


Featured researches published by Martijn L. Chatrou.


Circulation Research | 2015

Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion

Alexander N. Kapustin; Martijn L. Chatrou; Ignat Drozdov; Ying Zheng; Sean M. Davidson; Daniel Soong; Malgorzata Furmanik; Pilar Sanchis; Rafael T. M. de Rosales; Daniel Alvarez-Hernandez; Rukshana Shroff; Xiaoke Yin; Karin H. Müller; Jeremy N. Skepper; Manuel Mayr; Chris Reutelingsperger; Adrian H. Chester; Sergio Bertazzo; Leon J. Schurgers; Catherine M. Shanahan

RATIONALE Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. OBJECTIVE The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. METHODS AND RESULTS Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. CONCLUSIONS This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention.


Blood Reviews | 2012

Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists.

Martijn L. Chatrou; Kristien Winckers; Tilman M. Hackeng; Chris Reutelingsperger; Leon J. Schurgers

Vitamin K-antagonists (VKA) are the most widely used anti-thrombotic drugs with substantial efficacy in reducing risk of arterial and venous thrombosis. Several lines of evidence indicate, however, that VKA inhibit not only post-translational activation of vitamin K-dependent coagulation factors but also synthesis of functional extra-hepatic vitamin K-dependent proteins thereby eliciting undesired side-effects. Vascular calcification is one of the recently revealed side-effects of VKA. Vascular calcification is an actively regulated process involving vascular cells and a number of vitamin K-dependent proteins. Mechanistic understanding of vascular calcification is essential to improve VKA-based treatments of both thrombotic disorders and atherosclerosis. This review addresses vitamin K-cycle and vitamin K-dependent processes of vascular calcification that are affected by VKA. We conclude that there is a growing need for better understanding of the effects of anticoagulants on vascular calcification and atherosclerosis.


PLOS ONE | 2012

Vitamin K-Antagonists Accelerate Atherosclerotic Calcification and Induce a Vulnerable Plaque Phenotype

Leon J. Schurgers; Ivo A. Joosen; Eduard M. Laufer; Martijn L. Chatrou; Marjolein Herfs; Mark H.M. Winkens; Ralf Westenfeld; Thilo Krueger; Catherine M. Shanahan; Willi Jahnen-Dechent; Erik A.L. Biessen; Jagat Narula; Cees Vermeer; Leonard Hofstra; Chris Reutelingsperger

Background Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE−/− model of atherosclerosis. Methodology/Principal Findings A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE−/− mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K1 (VK1, 1.5 mg/g) or vitamin K1 and warfarin (VK1&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden. Conclusions/Significance VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE−/− mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.


PLOS ONE | 2015

Pharmacological Treatment with Annexin A1 Reduces Atherosclerotic Plaque Burden in LDLR-/- Mice on Western Type Diet.

Dennis H. M. Kusters; Martijn L. Chatrou; Brecht A. G. Willems; Marijke De Saint-Hubert; Matthias Bauwens; Emiel P. C. van der Vorst; Stefania Bena; Erik A.L. Biessen; Mauro Perretti; Leon J. Schurgers; Chris Reutelingsperger

Objective To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice. Methods Human recombinant annexin A1 (hr-anxA1) was produced by a prokaryotic expression system, purified and analysed on phosphatidylserine (PS) binding and formyl peptide receptor (FPR) activation. Biodistribution of 99mTechnetium-hr-anxA1 was determined in C57Bl/6J mice. 12 Weeks old LDLR-/- mice were fed a Western Type Diet (WTD) during 6 weeks (Group I) or 12 weeks (Group P). Mice received hr-anxA1 (1 mg/kg) or vehicle by intraperitoneal injection 3 times per week for a period of 6 weeks starting at start of WTD (Group I) or 6 weeks after start of WTD (Group P). Total aortic plaque burden and phenotype were analyzed using immunohistochemistry. Results Hr-anxA1 bound PS in Ca2+-dependent manner and activated FPR2/ALX. It inhibited rolling and adherence of neutrophils but not monocytes on activated endothelial cells. Half lives of circulating 99mTc-hr-anxA1 were <10 minutes and approximately 6 hours for intravenously (IV) and intraperitoneally (IP) administered hr-anxA1, respectively. Pharmacological treatment with hr-anxA1 had no significant effect on initiation of plaque formation (-33%; P = 0.21)(Group I) but significantly attenuated progression of existing plaques of aortic arch and subclavian artery (plaque size -50%, P = 0.005; necrotic core size -76% P = 0.015, hr-anxA1 vs vehicle) (Group P). Conclusion Hr-anxA1 may offer pharmacological means to treat chronic atherogenesis by reducing FPR-2 dependent neutrophil rolling and adhesion to activated endothelial cells and by reducing total plaque inflammation.


Cell Death & Differentiation | 2013

Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells

Kristof Schutters; Dennis H. M. Kusters; Martijn L. Chatrou; Trinidad Montero-Melendez; Marjo M. P. C. Donners; Niko Deckers; Dmitri V. Krysko; Peter Vandenabeele; Mauro Perretti; Leon J. Schurgers; Chris Reutelingsperger

Impaired efferocytosis has been shown to be associated with, and even to contribute to progression of, chronic inflammatory diseases such as atherosclerosis. Enhancing efferocytosis has been proposed as strategy to treat diseases involving inflammation. Here we present the strategy to increase ‘eat me’ signals on the surface of apoptotic cells by targeting cell surface-expressed phosphatidylserine (PS) with a variant of annexin A5 (Arg-Gly-Asp–annexin A5, RGD–anxA5) that has gained the function to interact with αvβ3 receptors of the phagocyte. We describe design and characterization of RGD–anxA5 and show that introduction of RGD transforms anxA5 from an inhibitor into a stimulator of efferocytosis. RGD–anxA5 enhances engulfment of apoptotic cells by phorbol-12-myristate-13-acetate-stimulated THP-1 (human acute monocytic leukemia cell line) cells in vitro and resident peritoneal mouse macrophages in vivo. In addition, RGD–anxA5 augments secretion of interleukin-10 during efferocytosis in vivo, thereby possibly adding to an anti-inflammatory environment. We conclude that targeting cell surface-expressed PS is an attractive strategy for treatment of inflammatory diseases and that the rationally designed RGD–anxA5 is a promising therapeutic agent.


PLOS ONE | 2015

Intra-Section Analysis of Human Coronary Arteries Reveals a Potential Role for Micro-Calcifications in Macrophage Recruitment in the Early Stage of Atherosclerosis

Martijn L. Chatrou; Jack P.M. Cleutjens; Ger J. van der Vusse; Ruben B. Roijers; P.H.A. Mutsaers; Leon J. Schurgers

Background Vascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis. Aim of This Study This study investigates the intra-section association of micro-calcifications with markers for atherosclerosis in randomly chosen section areas of human coronary arteries. Moreover, the possible causal relationship between calcifying vascular smooth muscle cells and inflammation was explored in vitro. Technical Approach To gain insights into the pathogenesis of atherosclerosis, we performed analysis of the distribution of micro-calcifications using a 3-MeV proton microbeam. Additionally, we performed systematic analyses of 30 to 40 regions of 12 coronary sections obtained from 6 patients including histology and immuno-histochemistry. Section areas were classified according to CD68 positivity. In vitro experiments using human vascular smooth muscle cells (hVSMCs) were performed to evaluate causal relationships between calcification and inflammation. Results From each section multiple areas were randomly chosen and subsequently analyzed. Depositions of calcium crystals at the micrometer scale were already observed in areas with early pre-atheroma type I lesions. Micro-calcifications were initiated at the elastica interna concomitantly with upregulation of the uncarboxylated form of matrix Gla-protein (ucMGP). Both the amount of calcium crystals and ucMGP staining increased from type I to IV atherosclerotic lesions. Osteochondrogenic markers BMP-2 and osteocalcin were only significantly increased in type IV atheroma lesions, and at this stage correlated with the degree of calcification. From atheroma area type III onwards a considerable number of CD68 positive cells were observed in combination with calcification, suggesting a pro-inflammatory effect of micro-calcifications. In vitro, invasion assays revealed chemoattractant properties of cell-culture medium of calcifying vascular smooth muscle cells towards THP-1 cells, which implies pro-inflammatory effect of calcium deposits. Additionally, calcifying hVSMCs revealed a pro-inflammatory profile as compared to non-calcifying hVSMCs. Conclusion Our data indicate that calcification of VSMCs is one of the earliest events in the genesis of atherosclerosis, which strongly correlates with ucMGP staining. Our findings suggest that loss of calcification inhibitors and/or failure of inhibitory capacity is causative for the early precipitation of calcium, with concomitant increased inflammation followed by osteochondrogenic transdifferentiation of VSMCs.


Nutrients | 2015

High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification

Daniel Scheiber; Patrick Horn; Martijn L. Chatrou; Sebastian A. Potthoff; Malte Kelm; Leon J. Schurgers; Ralf Westenfeld

Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures.


Journal of Cellular and Molecular Medicine | 2014

AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE(-/-) mice.

Mathias Burgmaier; Kristof Schutters; Brecht A. G. Willems; Emiel P. C. van der Vorst; Dennis H. M. Kusters; Martijn L. Chatrou; Lucy V. Norling; Erik A.L. Biessen; Jack P.M. Cleutjens; Mauro Perretti; Leon J. Schurgers; Chris Reutelingsperger

Annexin A5 (AnxA5) exerts anti‐inflammatory, anticoagulant and anti‐apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE−/− mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE−/− mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti‐inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF‐α‐activated endothelial cell layer. In conclusion, short‐term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE−/− mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.


PLOS ONE | 2014

Molecular Imaging of Cell Death in Tumors. Increasing Annexin A5 Size Reduces Contribution of Phosphatidylserine-Targeting Function to Tumor Uptake

Lisette Ungethüm; Martijn L. Chatrou; Dennis H. M. Kusters; Leon J. Schurgers; Chris Reutelingsperger

Objective Annexin A5 is a phosphatidylserine binding protein that binds dying cells in vivo. Annexin A5 is a potential molecular imaging agent to determine efficacy of anti-cancer therapy in patients. Its rapid clearance from circulation limits tumor uptake and, hence, its sensitivity. The aim of this study is to determine if non-invasive imaging of cell death in tumors will benefit from increasing circulation time of annexin A5 by increasing its size. Procedures Annexin A5 size was increased by complexation of biotinylated annexin A5 with Alexa-Fluor680-labeled streptavidin. The non-binding variant of annexin A5, M1234, was used as negative control. The HT29 colon carcinoma xenograft model in NMRI nude mice was used to measure tumor uptake in vivo. Tumor uptake of fluorescent annexin A5-variants was measured using non-invasive optical imaging. Results The annexin A5-streptavidin complex (4∶1, moles:moles, Mw ∼200 kDa) binds phosphatidylserine-expressing membranes with a Hill-coefficient of 5.7±0.5 for Ca2+-binding and an EC50 of 0.9±0.1 mM Ca2+ (EC50 is the Ca2+ concentration required for half maximal binding)(annexin A5: Hill-coefficient 3.9±0.2, EC50 1.5±0.2 mM Ca2+). Circulation half-life of annexin A5-streptavidin is ±21 minutes (circulation half-life of annexin A5 is ±4 min.). Tumor uptake of annexin A5-streptavidin was higher and persisted longer than annexin A5-uptake but depended less on phosphatidylserine binding. Conclusion Increasing annexin A5 size prolongs circulation times and increases tumor uptake, but decreases contribution of PS-targeting to tumor uptake and abolishes power to report efficacy of therapy.


Heart | 2014

162 Regulated Exosome Secretion by Vascular Smooth Muscle Cells Mediates Vascular Calcification

Alexander N. Kapustin; Martijn L. Chatrou; Sundeep S. Kalra; Ignat Drozdov; Daniel Soong; Malgorzata Furmanik; Daniel Alvarez-Hernandez; Rukshana Shroff; Xiaoke Yin; Karin H. Müller; Jeremy N. Skepper; Manuel Mayr; Chris Reuteling Sperger; Ying Zheng; Sean M. Davidson; Leon J. Schurgers; Catherine M. Shanahan

Arterial stiffening caused by deposition of calcium phosphate salts in the vessel wall is common in patients with atherosclerosis, renal failure and diabetes and contributes to high cardiovascular morbidity and mortality in these groups. Medial calcification is mediated by vascular smooth muscle cells (VSMCs) which undergo phenotypic transitions and secrete matrix vesicles (MVs) that form the first nidus for mineralization. In this study we studied the mechanisms regulating MV secretion and compared them with circulating calcifying calciprotein complexes and exosomes. Phenotypic modulation of human aortic VSMCs was induced by TGF-β1 or PDGF-BB. MVs and extracellular vesicles were isolated from cell media or platelet-free plasma, by differential ultracentrifugation and compared using Nanosight LM-10, flow cytometry, immunogold labelling, transmission electron microscopy and western blotting. We found that MVs are secreted from multivesicular bodies and enriched with the exosomal markers, CD63, CD81, CD9 and MHC I. Exosome secretion was regulated by the exosome biogenesis regulator, sphingomyelin phosphodiesterase 3 (SMPD3), and inhibition of SMPD3 prevented VSMC calcification. Treatment of VSMCs in calcifying conditions and loss of the contractile phenotype were both associated with elevated exosome secretion and increased calcification. In agreement with our in vitro data, MVB-like structures were observed in VSMCs ex vivo as shown by EM analysis of human vessel rings. Immunohistochemical staining revealed that the exosome markers, CD63 and annexin A6 were present in the extracellular (ECM) at sites of vascular calcification in vivo . Importantly, only exosomes secreted by VSMCs in calcifying conditions contained amorphous calcium phosphate crystals as detected by EDX analysis. Nanosite analysis revealed that calcifying VSMC-derived exosomes are similar in size to non-calcifying exosomes (mode 136 +/- 3.6 nm and 147+/- 5.9 nm, correspondingly) and were similar to exosomes, isolated from the blood (Mode 146+/-14 nm). Calcifying exosomes were also distinct from calcium phosphate crystals (mode 107 +/- 7 nm) and fetuin-A containing calciprotein particles (mode 182 +/- 9.3 nm). Our data indicate that vascular calcification is mediated by VSMC-derived exosomes and that loss of the contractile VSMC phenotype and mineral imbalance promote calcification by enhanced exosome secretion. Calcifying exosomes are distinct from calcium phosphate crystals or calciprotein particles, and may be presented in the circulation where their levels may be a novel indicator of vascular calcification.

Collaboration


Dive into the Martijn L. Chatrou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Perretti

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefania Bena

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Marijke De Saint-Hubert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge