Martin A. Baraibar
Pierre-and-Marie-Curie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin A. Baraibar.
Cell Reports | 2014
Silvia Carnio; Francesca LoVerso; Martin A. Baraibar; Emanuela Longa; Muzamil Majid Khan; Manuela Maffei; Markus Reischl; Monica Canepari; Stefan Loefler; Helmut Kern; Bert Blaauw; Bertrand Friguet; Roberto Bottinelli; Rüdiger Rudolf; Marco Sandri
Summary The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy.
Journal of Proteomics | 2013
Martin A. Baraibar; Romain Ladouce; Bertrand Friguet
UNLABELLED Increased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases. However, in most cases, the proteins targeted by these deleterious modifications as well as their consequences have not yet been clearly identified. Indeed, this is essential to determine whether and how these modified proteins are impacting on cellular function, on the development of the senescent phenotype and the pathogenesis of age-related diseases. In this context, protein modifications occurring during aging and upon oxidative stress as well as main proteomic methods for detecting, quantifying and identifying oxidized proteins are described. Relevant proteomics studies aimed at monitoring the extent of protein carbonylation and identifying the targeted proteins in the context of aging and oxidative stress are also presented. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. BIOLOGICAL SIGNIFICANCE Accumulation of damaged macromolecules, including oxidatively damaged (carbonylated) proteins, is a hallmark of cellular and organismal aging. Since protein carbonyls are the most commonly used markers of protein oxidation, different methods have been developed for the detection and quantification of carbonylated proteins. The identification of these protein targets is of valuable interest in order to understand the mechanisms by which damaged proteins accumulate and potentially affect cellular functions during oxidative stress, cellular senescence and/or aging in vivo. The specificity of hydrazide derivatives to carbonyl groups and the presence of a wide range of functional groups coupled to the hydrazide, allowed the design of novel strategies for the detection and quantification of carbonylated proteins. Of note is the importance of fluorescent probes for monitoring carbonylated proteins. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Oxidative Medicine and Cellular Longevity | 2012
Martin A. Baraibar; Liang Liu; Emad K. Ahmed; Bertrand Friguet
Protein damage mediated by oxidation, protein adducts formation with advanced glycated end products and with products of lipid peroxidation, has been implicated during aging and age-related diseases, such as neurodegenerative diseases. Increased protein modification has also been described upon replicative senescence of human fibroblasts, a valid model for studying aging in vitro. However, the mechanisms by which these modified proteins could impact on the development of the senescent phenotype and the pathogenesis of age-related diseases remain elusive. In this study, we performed in silico approaches to evidence molecular actors and cellular pathways affected by these damaged proteins. A database of proteins modified by carbonylation, glycation, and lipid peroxidation products during aging and age-related diseases was built and compared to those proteins identified during cellular replicative senescence in vitro. Common cellular pathways evidenced by enzymes involved in intermediate metabolism were found to be targeted by these modifications, although different tissues have been examined. These results underscore the potential effect of protein modification in the impairment of cellular metabolism during aging and age-related diseases.
Human Molecular Genetics | 2010
Capucine Trollet; Seyed Yahya Anvar; Andrea Venema; Iain Hargreaves; Keith Foster; Alban Vignaud; Arnaud Ferry; Elisa Negroni; Christophe Hourdé; Martin A. Baraibar; Peter A. C. 't Hoen; Janet E. Davies; David C. Rubinsztein; Simon Heales; Vincent Mouly; Silvère M. van der Maarel; Gillian Butler-Browne; Vered Raz; George Dickson
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.
Progress in Molecular Biology and Translational Science | 2012
Martin A. Baraibar; Bertrand Friguet
Accumulation of oxidized and damaged proteins is a hallmark of the aging process in different organs and tissues. Intracellular protein degradation is normally the most efficient mechanism to prevent toxicity associated with the accumulation of altered proteins without affecting the cellular reserves of amino acids. Protein degradation by the proteasomal system is a key process for the maintenance of cellular protein homeostasis and has come into the focus of aging research during the last decade. During the last few years, several lines of evidence have indicated that proteasome function is impaired during aging, suggesting that this decreased activity might be causally related to the aging process and the occurrence of age-associated diseases. This chapter reviews the proteasome status in organs, tissues, cells, and model organisms during aging as well as the molecular mechanisms involved in the age-related decline of proteasome function. Finally, interventions aimed at rejuvenating proteasome function as a potential antiaging strategy are discussed.
Free Radical Biology and Medicine | 2011
Martin A. Baraibar; Janek Hyzewicz; Adelina Rogowska-Wrzesinska; Romain Ladouce; Peter Roepstorff; Vincent Mouly; Bertrand Friguet
Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways were focused on two distinct proteins: p53 for altered protein expression and huntingtin for increased protein carbonylation. This study emphasizes the importance of performing analysis addressing different aspects of the cellular proteome to have a more accurate view of their changes upon stress.
Experimental Gerontology | 2013
Martin A. Baraibar; Bertrand Friguet
Oxidatively modified proteins build-up with age results, at least in part, from the increase of reactive oxygen species and other toxic compounds originating from both cellular metabolism and external factors. Experimental evidence has also indicated that failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins. We have previously shown that oxidized proteins as well as proteins modified by lipid peroxidation and glycoxidation adducts are accumulating in senescent human WI-38 fibroblasts and reported that proteins targeted by these modifications are mainly involved in protein maintenance, energy metabolism and cytoskeleton. Alterations in the proteome of human muscle adult stem cells upon oxidative stress have also been recently analyzed. The carbonylated proteins identified were also found to be involved in key cellular functions, such as carbohydrate metabolism, protein maintenance, cellular motility and protein homeostasis. More recently, we have built a database of proteins modified by carbonylation, glycation and lipid peroxidation products during aging and age-related diseases, such as neurodegenerative diseases. Common pathways evidenced by enzymes involved in intermediate metabolism were found targeted by these modifications, although different tissues have been examined. These results underscore the implication of potential deleterious effects of protein irreversible oxidative modifications in key cellular pathways during aging and in the pathogenesis of age-related diseases.
Neuromuscular Disorders | 2010
Alban Vignaud; Arnaud Ferry; Aline Huguet; Martin A. Baraibar; C. Trollet; Janek Hyzewicz; Gillian Butler-Browne; Jack Puymirat; Geneviève Gourdon; Denis Furling
Myotonic dystrophy type 1 (DM1) is a neuromuscular disease caused by the expansion of a CTG repeat in the DMPK gene and characterised by progressive skeletal muscle weakness and wasting. To investigate the effects of the CTG expansion on the physiological function of the skeletal muscles, we have used a transgenic mouse model carrying the human DM1 region with 550 expanded CTG repeats. Maximal force is reduced in the skeletal muscles of 10-month-old but not in 3-month-old DM1 mice when compared to age-matched non-transgenic littermates. The progressive weakness observed in the DM1 mice is directly related to the reduced muscle mass and muscle fibre size. A significant increase in trypsin-like proteasome activity and Fbxo32 expression is also measured in the DM1 muscles indicating that an atrophic process mediated by the ubiquitin-proteasome pathway may contribute to the progressive muscle wasting and weakness in the DM1 mice.
Biogerontology | 2013
Martin A. Baraibar; Stéphanie Duguez; Gillian Butler-Browne; Daniel Béchet; Bertrand Friguet
Skeletal muscle ageing is characterized by a progressive and dramatic loss of muscle mass and strength leading to decreased muscular function resulting in muscle weakness which is often referred to as sarcopenia. Following the standardisation of “omics” approaches to study the genome (genomics) and the transcriptome (transcriptomics), the study of the proteins encoded by the genome, referred to as proteomics, is a tremendous challenge. Unlike the genome, the proteome varies in response to many physiological or pathological factors. In addition, the proteome is orders of magnitude more complex than the transcriptome due to post-translational modifications, protein oxidation and limited protein degradation. Proteomic studies, including the analysis of protein abundance as well as post-translational modified proteins have been shown to provide valuable information to unravel the key molecular pathways implicated in complex biological processes, such as tissue and organ ageing. In this article, we will describe proteomic approaches for the analysis of protein abundance as well as the specific protein targets for oxidative damage upon oxidative stress and/or during skeletal muscle ageing.
Biochimica et Biophysica Acta | 2013
Hilaire Bakala; Romain Ladouce; Martin A. Baraibar; Bertrand Friguet
Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid β-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid β-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid β-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid β-oxidation and TCA/urea cycle enzymes.