Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin A. Birchall is active.

Publication


Featured researches published by Martin A. Birchall.


The Lancet | 2008

Clinical transplantation of a tissue-engineered airway

Paolo Macchiarini; Philipp Jungebluth; Tetsuhiko Go; M. Adelaide Asnaghi; Louisa Rees; Tristan A Cogan; Amanda L. Dodson; Jaume Martorell; Silvia Bellini; Pier Paolo Parnigotto; Sally C. Dickinson; Anthony P. Hollander; Sara Mantero; Maria Teresa Conconi; Martin A. Birchall

BACKGROUND The loss of a normal airway is devastating. Attempts to replace large airways have met with serious problems. Prerequisites for a tissue-engineered replacement are a suitable matrix, cells, ideal mechanical properties, and the absence of antigenicity. We aimed to bioengineer tubular tracheal matrices, using a tissue-engineering protocol, and to assess the application of this technology in a patient with end-stage airway disease. METHODS We removed cells and MHC antigens from a human donor trachea, which was then readily colonised by epithelial cells and mesenchymal stem-cell-derived chondrocytes that had been cultured from cells taken from the recipient (a 30-year old woman with end-stage bronchomalacia). This graft was then used to replace the recipients left main bronchus. FINDINGS The graft immediately provided the recipient with a functional airway, improved her quality of life, and had a normal appearance and mechanical properties at 4 months. The patient had no anti-donor antibodies and was not on immunosuppressive drugs. INTERPRETATION The results show that we can produce a cellular, tissue-engineered airway with mechanical properties that allow normal functioning, and which is free from the risks of rejection. The findings suggest that autologous cells combined with appropriate biomaterials might provide successful treatment for patients with serious clinical disorders.


Nature Materials | 2009

Rational design and application of responsive |[alpha]|-helical peptide hydrogels

Eleanor F. Banwell; Edgardo Abelardo; Dave J. Adams; Martin A. Birchall; Adam M Corrigan; Athene M. Donald; Mark Kirkland; Louise C. Serpell; Michael F. Butler; Derek N. Woolfson

Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.


Clinical Otolaryngology | 2006

Human papillomavirus and head and neck cancer: a systematic review and meta-analysis

Cgl Hobbs; Jonathan A C Sterne; Mick Bailey; Robert S. Heyderman; Martin A. Birchall; Steve Thomas

•It has been suggested that the link between human papillomavirus (HPV) and head and neck squamous cell carcinoma (HNSCC) is specific to carcinoma of the tonsil.


The Lancet | 2012

Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study

Martin J. Elliott; Paolo De Coppi; Simone Speggiorin; Derek J. Roebuck; Colin R. Butler; Edward Samuel; Claire Crowley; Clare A. McLaren; Anja Fierens; David Vondrys; L.A. Cochrane; C.G. Jephson; Sam M. Janes; Nicholas J. Beaumont; Tristan A Cogan; Augustinus Bader; Alexander M. Seifalian; J. Justin Hsuan; Mark W. Lowdell; Martin A. Birchall

BACKGROUND Stem-cell-based, tissue engineered transplants might offer new therapeutic options for patients, including children, with failing organs. The reported replacement of an adult airway using stem cells on a biological scaffold with good results at 6 months supports this view. We describe the case of a child who received a stem-cell-based tracheal replacement and report findings after 2 years of follow-up. METHODS A 12-year-old boy was born with long-segment congenital tracheal stenosis and pulmonary sling. His airway had been maintained by metal stents, but, after failure, a cadaveric donor tracheal scaffold was decellularised. After a short course of granulocyte colony stimulating factor, bone marrow mesenchymal stem cells were retrieved preoperatively and seeded onto the scaffold, with patches of autologous epithelium. Topical human recombinant erythropoietin was applied to encourage angiogenesis, and transforming growth factor β to support chondrogenesis. Intravenous human recombinant erythropoietin was continued postoperatively. Outcomes were survival, morbidity, endoscopic appearance, cytology and proteomics of brushings, and peripheral blood counts. FINDINGS The graft revascularised within 1 week after surgery. A strong neutrophil response was noted locally for the first 8 weeks after surgery, which generated luminal DNA neutrophil extracellular traps. Cytological evidence of restoration of the epithelium was not evident until 1 year. The graft did not have biomechanical strength focally until 18 months, but the patient has not needed any medical intervention since then. 18 months after surgery, he had a normal chest CT scan and ventilation-perfusion scan and had grown 11 cm in height since the operation. At 2 years follow-up, he had a functional airway and had returned to school. INTERPRETATION Follow-up of the first paediatric, stem-cell-based, tissue-engineered transplant shows potential for this technology but also highlights the need for further research. FUNDING Great Ormond Street Hospital NHS Trust, The Royal Free Hampstead NHS Trust, University College Hospital NHS Foundation Trust, and Region of Tuscany.


Laryngoscope | 2000

Raman spectroscopy for early detection of laryngeal malignancy : Preliminary results

Nicholas Stone; Pela Stavroulaki; Catherine Kendall; Martin A. Birchall; Hugh Barr

Objective Raman spectroscopy, the analysis of scattered photons after monochromatic laser excitation, is well established in nonbiological sciences. Recently this method has been used to differentiate premalignant and malignant lesions from normal tissue. Its application for early diagnosis has been explored in a variety of sites (e.g., esophagus, cervix), but not, to date, in laryngeal cancer. The objective of this study was to perform a feasibility study of the use of Raman spectroscopy for early diagnosis of laryngeal malignancy.


Transplant International | 2011

Regenerative medicine as applied to solid organ transplantation: current status and future challenges

Giuseppe Orlando; Pedro M. Baptista; Martin A. Birchall; Paolo De Coppi; Alan C. Farney; Nadia Guimaraes-Souza; Emmanuel C. Opara; Jeffrey Rogers; Dror Seliktar; Keren Shapira-Schweitzer; Robert J. Stratta; Anthony Atala; Kathryn J. Wood; Shay Soker

In the last two decades, regenerative medicine has shown the potential for “bench‐to‐bedside” translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting‐edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using “natural tissue” scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom‐made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immunosuppression. This review describes recent advances in the engineering of several key tissues and organs.


Clinical Otolaryngology | 2009

Complications following gastrostomy tube insertion in patients with head and neck cancer: a prospective multi-institution study, systematic review and meta-analysis.

D.G. Grant; P.T. Bradley; D.D. Pothier; D. Bailey; S. Caldera; D.L. Baldwin; Martin A. Birchall

Objectives:  To measure morbidity and mortality rates following insertion of gastrostomy tubes in head and neck cancer patients. To determine evidence for any relationship between gastrostomy insertion technique and complication rates.


Biomaterials | 2012

A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration

Giorgia Totonelli; Panagiotis Maghsoudlou; Massimo Garriboli; Johannes Riegler; Giuseppe Orlando; Alan J. Burns; Nj Sebire; Virpi V. Smith; Jonathan M. Fishman; Marco Ghionzoli; Mark Turmaine; Martin A. Birchall; Anthony Atala; Shay Soker; Mark F. Lythgoe; Alexander M. Seifalian; Agostino Pierro; Simon Eaton; Paolo De Coppi

Management of intestinal failure remains a clinical challenge and total parenteral nutrition, intestinal elongation and/or transplantation are partial solutions. In this study, using a detergent-enzymatic treatment (DET), we optimize in rats a new protocol that creates a natural intestinal scaffold, as a base for developing functional intestinal tissue. After 1 cycle of DET, histological examination and SEM and TEM analyses showed removal of cellular elements with preservation of the native architecture and connective tissue components. Maintenance of biomechanical, adhesion and angiogenic properties were also demonstrated strengthen the idea that matrices obtained using DET may represent a valid support for intestinal regeneration.


The Journal of Thoracic and Cardiovascular Surgery | 2010

Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs.

Tetsuhiko Go; Philipp Jungebluth; Silvia Baiguero; Adelaide Asnaghi; Jaume Martorell; Helmut Ostertag; Sara Mantero; Martin A. Birchall; Augustinus Bader; Paolo Macchiarini

OBJECTIVE We sought to determine the relative contributions of epithelial cells and mesenchymal stem cell-derived chondrocytes to the survival of tissue-engineered airway transplants in pigs. METHODS Nonimmunogenic tracheal matrices were obtained by using a detergent-enzymatic method. Major histocompatibility complex-unmatched animals (weighing 65 +/- 4 kg) were divided into 4 groups (each n = 5), and 6 cm of their tracheas were orthotopically replaced with decellularized matrix only (group I), decellularized matrix with autologous mesenchymal stem cell-derived chondrocytes externally (group II), decellularized matrix with autologous epithelial cells internally (group III), or decellularized matrix with both cell types (group IV). Autologous cells were recovered, cultured, and expanded. Mesenchymal stem cells were differentiated into chondrocytes by using growth factors. Both cell types were seeded simultaneously with a dual-chamber bioreactor. Animals were not immunosuppressed during the entire study. Biopsy specimens and blood samples were taken from recipients continuously, and animals were observed for a maximum of 60 days. RESULTS Matrices were completely covered with both cell types within 72 hours. Survival of the pigs was significantly affected by group (P < .05; group I, 11 +/- 2 days; group II, 29 +/- 4 days; group III, 34 +/- 4 days; and group IV, 60 +/- 1 days). Cause of death was a combination of airway obstruction and infection (group I), mainly infection (group II), or primarily stenosis (group III). However, pigs in group IV were alive, with no signs of airway collapse or ischemia and healthy epithelium. There were no clinical, immunologic, or histologic signs of rejection despite the lack of immunosuppression. CONCLUSIONS We confirm the clinical potential of autologous cell- and tissue-engineered tracheal grafts, and suggest that the seeding of both epithelial and mesenchymal stem cell-derived chondrocytes is necessary for optimal graft survival.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model

Jonathan M. Fishman; Mark W. Lowdell; Luca Urbani; Tahera Ansari; Alan J. Burns; Mark Turmaine; Janet North; Paul Sibbons; Alexander M. Seifalian; Kathryn J. Wood; Martin A. Birchall; Paolo De Coppi

Decellularized (acellular) scaffolds, composed of natural extracellular matrix, form the basis of an emerging generation of tissue-engineered organ and tissue replacements capable of transforming healthcare. Prime requirements for allogeneic, or xenogeneic, decellularized scaffolds are biocompatibility and absence of rejection. The humoral immune response to decellularized scaffolds has been well documented, but there is a lack of data on the cell-mediated immune response toward them in vitro and in vivo. Skeletal muscle scaffolds were decellularized, characterized in vitro, and xenotransplanted. The cellular immune response toward scaffolds was evaluated by immunohistochemistry and quantified stereologically. T-cell proliferation and cytokines, as assessed by flow cytometry using carboxy-fluorescein diacetate succinimidyl ester dye and cytometric bead array, formed an in vitro surrogate marker and correlate of the in vivo host immune response toward the scaffold. Decellularized scaffolds were free of major histocompatibility complex class I and II antigens and were found to exert anti-inflammatory and immunosuppressive effects, as evidenced by delayed biodegradation time in vivo; reduced sensitized T-cell proliferative activity in vitro; reduced IL-2, IFN-γ, and raised IL-10 levels in cell-culture supernatants; polarization of the macrophage response in vivo toward an M2 phenotype; and improved survival of donor-derived xenogeneic cells at 2 and 4 wk in vivo. Decellularized scaffolds polarize host responses away from a classical TH1-proinflammatory profile and appear to down-regulate T-cell xeno responses and TH1 effector function by inducing a state of peripheral T-cell hyporesponsiveness. These results have substantial implications for the future clinical application of tissue-engineered therapies.

Collaboration


Dive into the Martin A. Birchall's collaboration.

Top Co-Authors

Avatar

Mark W. Lowdell

University College London

View shared research outputs
Top Co-Authors

Avatar

Alexander M. Seifalian

Royal Free London NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Paolo De Coppi

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan M. Fishman

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Claire Crowley

University College London

View shared research outputs
Top Co-Authors

Avatar

Sam M. Janes

University College London

View shared research outputs
Top Co-Authors

Avatar

Colin R. Butler

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge