Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin A. Horstmann is active.

Publication


Featured researches published by Martin A. Horstmann.


Lancet Oncology | 2009

A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study

Monique L. den Boer; Marjon van Slegtenhorst; Renee X. de Menezes; Meyling Cheok; Jessica Buijs-Gladdines; Susan T.C.J.M. Peters; Laura J.C.M. van Zutven; H. Berna Beverloo; Peter J. van der Spek; Martin A. Horstmann; Gritta E. Janka-Schaub; Willem A. Kamps; William E. Evans; Rob Pieters

BACKGROUND Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to use a genome-wide study to improve prognostic classification of ALL in children. METHODS We constructed a classifier based on gene expression in 190 children with newly diagnosed ALL (German Cooperative ALL [COALL] discovery cohort) by use of double-loop cross-validation and validated this in an independent cohort of 107 newly diagnosed patients (Dutch Childhood Oncology Group [DCOG] independent validation cohort). Hierarchical cluster analysis with classifying gene-probe sets revealed a new ALL subtype, the underlying genetic abnormalities of which were characterised by comparative genomic hybridisation-arrays and molecular cytogenetics. FINDINGS Our classifier predicted ALL subtype with a median accuracy of 90.0% (IQR 88.3-91.7) in the discovery cohort and correctly identified 94 of 107 patients (accuracy 87.9%) in the independent validation cohort. Without our classifier, 44 children in the COALL cohort and 33 children in the DCOG cohort would have been classified as B-other. However, hierarchical clustering showed that many of these genetically unclassified cases clustered with BCR-ABL1-positive cases: 30 (19%) of 154 children with precursor B-ALL in the COALL cohort and 14 (15%) of 92 children with precursor B-ALL in the DCOG cohort had this BCR-ABL1-like disease. In the COALL cohort, these patients had unfavourable outcome (5-year disease-free survival 59.5%, 95% CI 37.1-81.9) compared with patients with other precursor B-ALL (84.4%, 76.8-92.1%; p=0.012), a prognosis similar to that of patients with BCR-ABL1-positive ALL (51.9%, 23.1-80.6%). In the DCOG cohort, the prognosis of BCR-ABL1-like disease (57.1%, 31.2-83.1%) was worse than that of other precursor B-ALL (79.2%, 70.2-88.3%; p=0.026), and similar to that of BCR-ABL1-positive ALL (32.5%, 2.3-62.7%). 36 (82%) of the patients with BCR-ABL1-like disease had deletions in genes involved in B-cell development, including IKZF1, TCF3, EBF1, PAX5, and VPREB1; only nine (36%) of 25 patients with B-other ALL had deletions in these genes (p=0.0002). Compared with other precursor B-ALL cells, BCR-ABL1-like cells were 73 times more resistant to L-asparaginase (p=0.001) and 1.6 times more resistant to daunorubicin (p=0.017), but toxicity of prednisolone and vincristine did not differ. INTERPRETATION New treatment strategies are needed to improve outcome for this newly identified high-risk subtype of ALL. FUNDING Dutch Cancer Society, Sophia Foundation for Medical Research, Paediatric Oncology Foundation Rotterdam, Centre of Medical Systems Biology of the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research, American National Institute of Health, American National Cancer Institute, and American Lebanese Syrian Associated Charities.


Nature Genetics | 2011

Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.

Priscila Pini Zenatti; Daniel Ribeiro; Wenqing Li; Linda Zuurbier; Milene Costa da Silva; Maddalena Paganin; Julia Tritapoe; Julie A. Hixon; André Bortolini Silveira; Bruno A. Cardoso; Leonor M. Sarmento; Nádia C. Correia; María L. Toribio; Joerg Kobarg; Martin A. Horstmann; Rob Pieters; Silvia Regina Brandalise; Adolfo A. Ferrando; Jules P.P. Meijerink; Scott K. Durum; J. Andrés Yunes; João T. Barata

Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R–mediated signaling in T-ALL.


Cancer Cell | 2011

Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia

Irene Homminga; Rob Pieters; Anton W. Langerak; Johan de Rooi; Andrew Stubbs; Monique Verstegen; Maartje Vuerhard; Jessica Buijs-Gladdines; Clarissa Kooi; Petra Klous; Pieter Van Vlierberghe; Adolfo A. Ferrando; Jean Michel Cayuela; Brenda Verhaaf; H. Berna Beverloo; Martin A. Horstmann; Valerie de Haas; Anna-Sophia Wiekmeijer; Karin Pike-Overzet; Frank J. T. Staal; Wouter de Laat; Jean Soulier; François Sigaux; Jules P.P. Meijerink

To identify oncogenic pathways in T cell acute lymphoblastic leukemia (T-ALL), we combined expression profiling of 117 pediatric patient samples and detailed molecular-cytogenetic analyses including the Chromosome Conformation Capture on Chip (4C) method. Two T-ALL subtypes were identified that lacked rearrangements of known oncogenes. One subtype associated with cortical arrest, expression of cell cycle genes, and ectopic NKX2-1 or NKX2-2 expression for which rearrangements were identified. The second subtype associated with immature T cell development and high expression of the MEF2C transcription factor as consequence of rearrangements of MEF2C, transcription factors that target MEF2C, or MEF2C-associated cofactors. We propose NKX2-1, NKX2-2, and MEF2C as T-ALL oncogenes that are activated by various rearrangements.


Blood | 2008

The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia

Pieter Van Vlierberghe; Martine van Grotel; Joelle Tchinda; Charles Lee; H. Berna Beverloo; Peter J. van der Spek; Andrew Stubbs; Jan Cools; Kyosuke Nagata; Maarten Fornerod; Jessica Buijs-Gladdines; Martin A. Horstmann; Elisabeth R. van Wering; Jean Soulier; Rob Pieters; Jules P.P. Meijerink

T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner that possibly delineate specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv (7)(p15q34) patients, is characterized by elevated expression of HOXA genes. Using a gene expression-based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new patients with elevated HOXA levels. Using microarray-based comparative genomic hybridization (array-CGH), a cryptic and recurrent deletion, del (9)(q34.11q34.13), was exclusively identified in 3 of these 5 patients. This deletion results in a conserved SET-NUP214 fusion product, which was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CRM1 and DOT1L, which may transcriptionally activate specific members of the HOXA cluster. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation, and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.


Blood | 2013

Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL

Arian van der Veer; Esmé Waanders; Rob Pieters; Marieke E. Willemse; Simon V. van Reijmersdal; Lisa J. Russell; Christine J. Harrison; William E. Evans; V H J van der Velden; Peter M. Hoogerbrugge; Frank N. van Leeuwen; Gabriele Escherich; Martin A. Horstmann; Leila Mohammadi Khankahdani; Dimitris Rizopoulos; Hester A. de Groot-Kruseman; Edwin Sonneveld; Roland P. Kuiper; Monique L. den Boer

Most relapses in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are not predicted using current prognostic features. Here, we determined the co-occurrence and independent prognostic relevance of 3 recently identified prognostic features: BCR-ABL1-like gene signature, deletions in IKZF1, and high CRLF2 messenger RNA expression (CRLF2-high). These features were determined in 4 trials representing 1128 children with ALL: DCOG ALL-8, ALL9, ALL10, and Cooperative ALL (COALL)-97/03. BCR-ABL1-like, IKZF1-deleted, and CRLF2-high cases constitute 33.7% of BCR-ABL1-negative, MLL wild-type BCP-ALL cases, of which BCR-ABL1-like and IKZF1 deletion (co)occurred most frequently. Higher cumulative incidence of relapse was found for BCR-ABL1-like and IKZF1-deleted, but not CRLF2-high, cases relative to remaining BCP-ALL cases, reflecting the observations in each of the cohorts analyzed separately. No relapses occurred among cases with CRLF2-high as single feature, whereas 62.9% of all relapses in BCR-ABL1-negative, MLL wild-type BCP-ALL occurred in cases with BCR-ABL1-like signature and/or IKZF1 deletion. Both the BCR-ABL1-like signature and IKZF1 deletions were prognostic features independent of conventional prognostic markers in a multivariate model, and both remained prognostic among cases with intermediate minimal residual disease. The BCR-ABL1-like signature and an IKZF1 deletion, but not CRLF2-high, are prognostic factors and are clinically of importance to identify high-risk patients who require more intensive and/or alternative therapies.


Blood | 2008

Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis

Brian V. Balgobind; Pieter Van Vlierberghe; Ans van den Ouweland; H. Berna Beverloo; Joan N.R. Terlouw-Kromosoeto; Elisabeth R. van Wering; Dirk Reinhardt; Martin A. Horstmann; Gertjan J. L. Kaspers; Rob Pieters; C. Michel Zwaan; Marry M. van den Heuvel-Eibrink; Jules P.P. Meijerink

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene. Patients with NF1 have a higher risk to develop juvenile myelomonocytic leukemia (JMML) with a possible progression toward acute myeloid leukemia (AML). In an oligo array comparative genomic hybridization-based screening of 103 patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL) and 71 patients with MLL-rearranged AML, a recurrent cryptic deletion, del(17)(q11.2), was identified in 3 patients with T-ALL and 2 patients with MLL-rearranged AML. This deletion has previously been described as a microdeletion of the NF1 region in patients with NF1. However, our patients lacked clinical NF1 symptoms. Mutation analysis in 4 of these del(17)(q11.2)-positive patients revealed that mutations in the remaining NF1 allele were present in 3 patients, confirming its role as a tumor-suppressor gene in cancer. In addition, NF1 inactivation was confirmed at the RNA expression level in 3 patients tested. Since the NF1 protein is a negative regulator of the RAS pathway (RAS-GTPase activating protein), homozygous NF1 inactivation represent a novel type I mutation in pediatric MLL-rearranged AML and T-ALL with a predicted frequency that is less than 10%. NF1 inactivation may provide an additional proliferative signal toward the development of leukemia.


Blood | 2009

WT1 mutations in T-ALL

Valeria Tosello; Marc R. Mansour; Kelly Barnes; Maddalena Paganin; Maria Luisa Sulis; Sarah Jenkinson; Christopher Allen; Rosemary E. Gale; David C. Linch; Teresa Palomero; Pedro J. Real; Vundavalli V. Murty; Xiaopan Yao; Susan M. Richards; Anthony H. Goldstone; Jacob M. Rowe; Giuseppe Basso; Peter H. Wiernik; Elisabeth Paietta; Rob Pieters; Martin A. Horstmann; Jules P.P. Meijerink; Adolfo A. Ferrando

The molecular mechanisms involved in disease progression and relapse in T-cell acute lymphoblastic leukemia (T-ALL) are poorly understood. We used single nucleotide polymorphism array analysis to analyze paired diagnostic and relapsed T-ALL samples to identify recurrent genetic alterations in T-ALL. This analysis showed that diagnosis and relapsed cases have common genetic alterations, but also that relapsed samples frequently lose chromosomal markers present at diagnosis, suggesting that relapsed T-ALL emerges from an ancestral clone different from the major leukemic population at diagnosis. In addition, we identified deletions and associated mutations in the WT1 tumor suppressor gene in 2 of 9 samples. Subsequent analysis showed WT1 mutations in 28 of 211 (13.2%) of pediatric and 10 of 85 (11.7%) of adult T-ALL cases. WT1 mutations present in T-ALL are predominantly heterozygous frameshift mutations resulting in truncation of the C-terminal zinc finger domains of this transcription factor. WT1 mutations are most prominently found in T-ALL cases with aberrant rearrangements of the oncogenic TLX1, TLX3, and HOXA transcription factor oncogenes. Survival analysis demonstrated that WT1 mutations do not confer adverse prognosis in pediatric and adult T-ALL. Overall, these results identify the presence of WT1 mutations as a recurrent genetic alteration in T-ALL.


Leukemia | 2010

NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols

L. Zuurbier; I. Homminga; Valerie S. Calvert; M. L. te Winkel; J. G. C. A. M. Buijs-Gladdines; C. Kooi; W. K. Smits; Edwin Sonneveld; A. J. P. Veerman; Willem A. Kamps; Martin A. Horstmann; E. F. Petricoin; Rob Pieters; Jules P.P. Meijerink

Aberrant activation of the NOTCH1 pathway by inactivating and activating mutations in NOTCH1 or FBXW7 is a frequent phenomenon in T-cell acute lymphoblastic leukemia (T-ALL). We retrospectively investigated the relevance of NOTCH1/FBXW7 mutations for pediatric T-ALL patients enrolled on Dutch Childhood Oncology Group (DCOG) ALL7/8 or ALL9 or the German Co-Operative Study Group for Childhood Acute Lymphoblastic Leukemia study (COALL-97) protocols. NOTCH1-activating mutations were identified in 63% of patients. NOTCH1 mutations affected the heterodimerization, the juxtamembrane and/or the PEST domains, but not the RBP-J-κ-associated module, the ankyrin repeats or the transactivation domain. Reverse-phase protein microarray data confirmed that NOTCH1 and FBXW7 mutations resulted in increased intracellular NOTCH1 levels in primary T-ALL biopsies. Based on microarray expression analysis, NOTCH1/FBXW7 mutations were associated with activation of NOTCH1 direct target genes including HES1, DTX1, NOTCH3, PTCRA but not cMYC. NOTCH1/FBXW7 mutations were associated with TLX3 rearrangements, but were less frequently identified in TAL1- or LMO2-rearranged cases. NOTCH1-activating mutations were less frequently associated with mature T-cell developmental stage. Mutations were associated with a good initial in vivo prednisone response, but were not associated with a superior outcome in the DCOG and COALL cohorts. Comparing our data with other studies, we conclude that the prognostic significance for NOTCH1/FBXW7 mutations is not consistent and may depend on the treatment protocol given.


Journal of Clinical Oncology | 2008

Gene Expression Signatures Predictive of Early Response and Outcome in High-Risk Childhood Acute Lymphoblastic Leukemia: A Children's Oncology Group Study

Deepa Bhojwani; Huining Kang; Renée X. de Menezes; Wenjian Yang; Harland N. Sather; Naomi P. Moskowitz; Dong Joon Min; Jeffrey W. Potter; Richard C. Harvey; Stephen P. Hunger; Nita L. Seibel; Elizabeth A. Raetz; Rob Pieters; Martin A. Horstmann; Mary V. Relling; Monique L. den Boer; Cheryl L. Willman; William L. Carroll

PURPOSE To identify children with acute lymphoblastic leukemia (ALL) at initial diagnosis who are at risk for inferior response to therapy by using molecular signatures. PATIENTS AND METHODS Gene expression profiles were generated from bone marrow blasts at initial diagnosis from a cohort of 99 children with National Cancer Institute-defined high-risk ALL who were treated uniformly on the Childrens Oncology Group (COG) 1961 study. For prediction of early response, genes that correlated to marrow status on day 7 were identified on a training set and were validated on a test set. An additional signature was correlated with long-term outcome, and the predictive models were validated on three large, independent patient cohorts. Results We identified a 24-probe set signature that was highly predictive of day 7 marrow status on the test set (P = .0061). Pathways were identified that may play a role in early blast regression. We have also identified a 47-probe set signature (which represents 41 unique genes) that was predictive of long-term outcome in our data set as well as three large independent data sets of patients with childhood ALL who were treated on different protocols. However, we did not find sufficient evidence for the added significance of these genes and the derived predictive models when other known prognostic features, such as age, WBC, and karyotype, were included in a multivariate analysis. CONCLUSION Genes and pathways that play a role in early blast regression may identify patients who may be at risk for inferior responses to treatment. A fully validated predictive gene expression signature was defined for high-risk ALL that provided insight into the biologic mechanisms of treatment failure.


Leukemia | 2010

Cooperative study group for childhood acute lymphoblastic leukaemia (COALL): long-term results of trials 82,85,89,92 and 97

G Escherich; Martin A. Horstmann; Martin Zimmermann; Gritta E. Janka-Schaub

In this study, the long-term outcome of 1818 patients treated in five consecutive clinical trials (the cooperative study group for childhood acute lymphoblastic leukaemia (COALL) 82, 85, 89, 92 and 97) from 24 cooperating centres in Germany is reported. The probability of event-free survival (pEFS) improved significantly from the first two trials conducted in the 1980s (COALL 82 and COALL 85) to the three trials conducted in the 1990s (COALL 89, 92 and 97) (P=0.001). Through all COALL studies, age ⩾10 years and initial white blood cell count (WBC) ⩾50 × 109/l and pro-B immunophenotype were of significant prognostic relevance. A refinement of risk assessment has been achieved by in vitro drug sensitivity testing in COALL 92 and 97. In patients with very sensitive leukaemic cells, therapy could be reduced without loss of efficacy. In COALL 97, a further improvement in risk stratification was gained by the molecular assessment of minimal residual disease (MRD) under treatment, which proved to have a superior prognostic effect when compared with in vitro drug sensitivity testing. Importantly, the gradual reduction in central nervous system (CNS) irradiation led to a decreased incidence of brain tumours as a second malignancy. In general, the prevention of treatment-related late effects will be one of the major issues in future studies. It remains to be shown whether prolonged infusions of anthracyclines, which have been implemented into the COALL studies after equal efficacy compared with short-time infusions was confirmed, will be associated with fewer cardiac late effects. Another way to prevent late effects may be a more refined risk assessment allowing for a reduction in cumulative treatment burden. A great challenge in the future will be to improve the overall treatment results, which very likely can only be achieved by the identification of molecularly defined subgroups to which novel, rational therapeutic strategies can be applied.

Collaboration


Dive into the Martin A. Horstmann's collaboration.

Top Co-Authors

Avatar

Rob Pieters

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Zimmermann

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith M. Boer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Berna Beverloo

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge