Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin A. Nowak is active.

Publication


Featured researches published by Martin A. Nowak.


Science | 2006

Five Rules for the Evolution of Cooperation

Martin A. Nowak

Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.


Nature | 2003

Antibody neutralization and escape by HIV-1

Xiping Wei; Julie M. Decker; Shuyi Wang; Huxiong Hui; John C. Kappes; Xiaoyun Wu; Jesus F. Salazar-Gonzalez; Maria G. Salazar; J. Michael Kilby; Michael S. Saag; Natalia L. Komarova; Martin A. Nowak; Beatrice H. Hahn; Peter D. Kwong; George M. Shaw

Neutralizing antibodies (Nab) are a principal component of an effective human immune response to many pathogens, yet their role in HIV-1 infection is unclear. To gain a better understanding of this role, we examined plasma from patients with acute HIV infection. Here we report the detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies. The viral inhibitory activity of Nab resulted in complete replacement of neutralization-sensitive virus by successive populations of resistant virus. Escape virus contained mutations in the env gene that were unexpectedly sparse, did not map generally to known neutralization epitopes, and involved primarily changes in N-linked glycosylation. This pattern of escape, and the exceptional density of HIV-1 envelope glycosylation generally, led us to postulate an evolving ‘glycan shield’ mechanism of neutralization escape whereby selected changes in glycan packing prevent Nab binding but not receptor binding. Direct support for this model was obtained by mutational substitution showing that Nab-selected alterations in glycosylation conferred escape from both autologous antibody and epitope-specific monoclonal antibodies. The evolving glycan shield thus represents a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.


Nature | 1998

Evolution of indirect reciprocity by image scoring

Martin A. Nowak; Karl Sigmund

Darwinian evolution has to provide an explanation for cooperative behaviour. Theories of cooperation are based on kin selection (dependent on genetic relatedness),, group selection and reciprocal altruism. The idea of reciprocal altruism usually involves direct reciprocity: repeated encounters between the same individuals allow for the return of an altruistic act by the recipient. Here we present a new theoretical framework, which is based on indirect reciprocity and does not require the same two individuals ever to meet again. Individual selection can nevertheless favour cooperative strategies directed towards recipients that have helped others in the past. Cooperation pays because it confers the image of a valuable community member to the cooperating individual. We present computer simulations and analytic models that specify the conditions required for evolutionary stability of indirect reciprocity. We show that the probability of knowing the ‘image’ of the recipient must exceed the cost-to-benefit ratio of the altruistic act. We propose that the emergence of indirect reciprocity was a decisive step for the evolution of human societies.


Nature | 2010

Distant metastasis occurs late during the genetic evolution of pancreatic cancer

Shinichi Yachida; Siân Jones; Ivana Bozic; Tibor Antal; Rebecca J. Leary; Baojin Fu; Mihoko Kamiyama; Ralph H. Hruban; James R. Eshleman; Martin A. Nowak; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; Christine A. Iacobuzio-Donahue

Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.


Nature | 2005

Evolution of indirect reciprocity

Martin A. Nowak; Karl Sigmund

Natural selection is conventionally assumed to favour the strong and selfish who maximize their own resources at the expense of others. But many biological systems, and especially human societies, are organized around altruistic, cooperative interactions. How can natural selection promote unselfish behaviour? Various mechanisms have been proposed, and a rich analysis of indirect reciprocity has recently emerged: I help you and somebody else helps me. The evolution of cooperation by indirect reciprocity leads to reputation building, morality judgement and complex social interactions with ever-increasing cognitive demands.


Science | 2011

Quantitative Analysis of Culture Using Millions of Digitized Books

Jean-Baptiste Michel; Yuan Kui Shen; Aviva Presser Aiden; Adrian Veres; Matthew K. Gray; Joseph P. Pickett; Dale Hoiberg; Dan Clancy; Peter Norvig; Jon Orwant; Steven Pinker; Martin A. Nowak; Erez Lieberman Aiden

Linguistic and cultural changes are revealed through the analyses of words appearing in books. We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics,’ focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.


Nature | 2006

A simple rule for the evolution of cooperation on graphs and social networks

Hisashi Ohtsuki; Christoph Hauert; Erez Lieberman; Martin A. Nowak

A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals. Human society is based to a large extent on mechanisms that promote cooperation. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of ‘social viscosity’ even in the absence of reputation effects or strategic complexity.


Nature | 2012

The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers

Luis A. Diaz; Richard Thomas Williams; Jian Wu; Isaac Kinde; J. Randolph Hecht; Jordan Berlin; Benjamin Allen; Ivana Bozic; Johannes G. Reiter; Martin A. Nowak; Kenneth W. Kinzler; Kelly S. Oliner; Bert Vogelstein

Colorectal tumours that are wild type for KRAS are often sensitive to EGFR blockade, but almost always develop resistance within several months of initiating therapy. The mechanisms underlying this acquired resistance to anti-EGFR antibodies are largely unknown. This situation is in marked contrast to that of small-molecule targeted agents, such as inhibitors of ABL, EGFR, BRAF and MEK, in which mutations in the genes encoding the protein targets render the tumours resistant to the effects of the drugs. The simplest hypothesis to account for the development of resistance to EGFR blockade is that rare cells with KRAS mutations pre-exist at low levels in tumours with ostensibly wild-type KRAS genes. Although this hypothesis would seem readily testable, there is no evidence in pre-clinical models to support it, nor is there data from patients. To test this hypothesis, we determined whether mutant KRAS DNA could be detected in the circulation of 28 patients receiving monotherapy with panitumumab, a therapeutic anti-EGFR antibody. We found that 9 out of 24 (38%) patients whose tumours were initially KRAS wild type developed detectable mutations in KRAS in their sera, three of which developed multiple different KRAS mutations. The appearance of these mutations was very consistent, generally occurring between 5 and 6 months following treatment. Mathematical modelling indicated that the mutations were present in expanded subclones before the initiation of panitumumab treatment. These results suggest that the emergence of KRAS mutations is a mediator of acquired resistance to EGFR blockade and that these mutations can be detected in a non-invasive manner. They explain why solid tumours develop resistance to targeted therapies in a highly reproducible fashion.


Nature Medicine | 1998

Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry.

J. Michael Kilby; Samuel E. Hopkins; Thomas Venetta; Betty DiMassimo; Gretchen A. Cloud; Jeannette Y. Lee; Leslie Alldredge; Eric Hunter; Dennis M. Lambert; Dani P. Bolognesi; Thomas J. Matthews; M. Ross Johnson; Martin A. Nowak; George M. Shaw; Michael S. Saag

T-20, a synthetic peptide corresponding to a region of the transmembrane subunit of the HIV-1 envelope protein, blocks cell fusion and viral entry at concentrations of less than 2 ng/ml in vitro. We administered intravenous T-20 (monotherapy) for 14 days to sixteen HIV-infected adults in four dose groups (3, 10, 30 and 100 mg twice daily). There were significant, dose-related declines in plasma HIV RNA in all subjects who received higher dose levels. All four subjects receiving 100 mg twice daily had a decline in plasma HIV RNA to less than 500 copies/ml, by bDNA assay. A sensitive RT–PCR assay (detection threshold 40 copies/ml) demonstrated that, although undetectable levels were not achieved in the 14-day dosing period, there was a 1.96 log10 median decline in plasma HIV RNA in these subjects. This study provides proof-of-concept that viral entry can be successfully blocked in vivo. Short-term administration of T-20 seems safe and provides potent inhibition of HIV replication comparable to anti-retroviral regimens approved at present.


Nature | 1997

Evolution of genetic redundancy

Martin A. Nowak; Maarten C. Boerlijst; Jonathan Cooke; John Maynard Smith

Genetic redundancy means that two or more genes are performing the same function and that inactivation of one of these genes has little or no effect on the biological phenotype. Redundancy seems to be widespread in genomes of higher organisms. Examples of apparently redundant genes come from numerous studies of developmental biology, immunology,, neurobiology, and the cell cycle,. Yet there is a problem: genes encoding functional proteins must be under selection pressure. If a gene was truly redundant then it would not be protected against the accumulation of deleterious mutations. A widespread view is therefore that such redundancy cannot be evolutionarily stable. Here we develop a simple genetic model to analyse selection pressures acting on redundant genes. We present four cases that can explain why genetic redundancy is common. In three cases, redundancy is even evolutionarily stable. Our theory provides a framework for exploring the evolution of genetic organization.

Collaboration


Dive into the Martin A. Nowak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishnendu Chatterjee

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Dominik Wodarz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge