Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Akogbéto is active.

Publication


Featured researches published by Martin Akogbéto.


Emerging Infectious Diseases | 2007

Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin.

Raphael N’Guessan; Vincent Corbel; Martin Akogbéto; Mark Rowland

These tools may no longer be effective for malaria control in parts of Benin.


BMC Genomics | 2008

Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s . from Southern Benin and Nigeria

Rousseau Djouaka; Adekunle A. Bakare; Ousmane Coulibaly; Martin Akogbéto; Hilary Ranson; Janet Hemingway; Clare Strode

BackgroundInsecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes.ResultsAll mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations.ConclusionMultiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes.


Insect Molecular Biology | 2000

The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression.

Mylène Weill; Fabrice Chandre; Cécile Brengues; Sylvie Manguin; Martin Akogbéto; Nicole Pasteur; Pierre Guillet; Michel Raymond

Anopheles gambiae s.s. is a complex of sibling taxa characterized by various paracentric inversions. In west and central Africa, where several taxa are sympatric, a kdr mutation responsible for pyrethroid resistance has been described in only one (the S taxon), suggesting an absence of gene flow between them. Following a thorough sampling, we have found a kdr mutation in another taxon (M). To establish whether this mutation is the same event or not, the large intron upstream of the kdr mutation was sequenced to find polymorphic sites in susceptible/resistant and M/S mosquitoes. The low genetic diversity found in this DNA region indicates that a local genetic sweep has recently occurred. However, some polymorphic sites were found, and it is therefore concluded that the kdr mutation in the M taxon is not an independent mutation event, and is best explained by an introgression from the S taxon. These results are discussed within the context of possible gene flow between members of An. gambiae s.s. taxa, and with the possible spread of the kdr mutation in other closely related malaria vectors of the An. gambiae complex.


Lancet Infectious Diseases | 2012

Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial

Vincent Corbel; Martin Akogbéto; Georgia Damien; Armel Djènontin; Fabrice Chandre; Christophe Rogier; Nicolas Moiroux; Joseph Chabi; Bio Banganna; Gil Germain Padonou; Marie-Claire Henry

BACKGROUND Malaria control efforts and elimination in Africa are being challenged by the development of resistance of parasites to antimalarial drugs and vectors to insecticides. We investigated whether the combination of long-lasting insecticidal mosquito nets (LLINs) with indoor residual spraying (IRS) or carbamate-treated plastic sheeting (CTPS) conferred enhanced protection against malaria and better management of pyrethroid-resistance in vectors than did LLINs alone. METHODS We did a cluster randomised controlled trial in 28 villages in southern Benin, west Africa. Inclusion criteria of the villages were moderate level of pyrethroid resistance in malaria vectors and minimum distance between villages of 2 km. We assessed four malaria vector control interventions: LLIN targeted coverage to pregnant women and children younger than 6 years (TLLIN, reference group), LLIN universal coverage of all sleeping units (ULLIN), TLLIN plus full coverage of carbamate-IRS applied every 8 months (TLLIN+IRS), and ULLIN plus full coverage of CTPS lined up to the upper part of the household walls (ULLIN+CTPS). The interventions were allocated to villages by a block randomisation on the basis of preliminary surveys and children of each village were randomly selected to participate with computer-generated numbers. The primary endpoint was the incidence density rate of Plasmodium falciparum clinical malaria in children younger than 6 years as was analysed by Poisson regression taking into account the effect of age and the sampling design with a generalised estimating equation approach. Clinical and parasitological information were obtained by active case detection of malaria episodes during 12 periods of 6 consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic plasmodial infections. Children or study investigators were not masked to study group. This study is registered with Current Controlled Trials, number ISRCTN07404145. FINDINGS Of 58 villages assessed, 28 were randomly assigned to intervention groups. 413-429 children were followed up in each intervention group for 18 months. The clinical incidence density of malaria was not reduced in the children from the ULLIN group (incidence density rate 0·95, 95% CI 0·67-1·36, p=0·79), nor in those from the TLLIN+IRS group (1·32, 0·90-1·93, p=0·15) or from the ULLIN+CTPS group (1·05, 0·75-1·48, p=0·77) compared with the reference group (TLLIN). The same trend was observed with the prevalence and parasite density of asymptomatic infections (non significant regression coefficients). INTERPRETATION No significant benefit for reducing malaria morbidity, infection, and transmission was reported when combining LLIN+IRS or LLIN+CTPS compared with a background of LLIN coverage. These findings are important for national malaria control programmes and should help the design of more cost-effective strategies for malaria control and elimination. FUNDING Ministère Français des Affaires Etrangères et Européennes (FSP project 2006-22), Institut de Recherche pour le Développement, Presidents Malaria Initiative (PMI) of US Governement.


Tropical Medicine & International Health | 2004

The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena

Abdoulaye Diabaté; Cécile Brengues; Thierry Baldet; K. R. Dabire; Jean-Marc Hougard; Martin Akogbéto; Pierre Kengne; Frédéric Simard; Pierre Guillet; Janet Hemingway; Fabrice Chandre

During extensive sampling in Burkina Faso and other African countries, the Leu‐Phe mutation producing the kdr pyrethroid resistance phenotype was reported in both Anopheles gambiae ss and A. arabiensis. This mutation was widely distributed at high frequency in the molecular S form of A. gambiae while it has been observed at a very low frequency in both the molecular M form and A. arabiensis in Burkina Faso. While the mutation in the M form is inherited through an introgression from the S form, its occurrence is a new and independent mutation event in A. arabiensis. Three nucleotides in the upstream intron of the kdr mutation differentiated A. arabiensis from A. gambiae ss and these specific nucleotides were associated with kdr mutation in A. arabiensis. Ecological divergences which facilitated the spread of the kdr mutation within the complex of A. gambiae ss in West Africa, are discussed.


Emerging Infectious Diseases | 2012

Loss of Household Protection from Use of Insecticide-Treated Nets against Pyrethroid-Resistant Mosquitoes, Benin

Alex Asidi; Raphael N’Guessan; Martin Akogbéto; C. F. Curtis; Mark Rowland

Restoring protection requires innovation combining pyrethroids and novel insecticides.


Malaria Journal | 2010

Insecticide resistance status in Anopheles gambiae in southern Benin

Anges Yadouleton; Gil Germain Padonou; Alex Asidi; Nicolas Moiroux; Sahabi Bio-Banganna; Vincent Corbel; Raphael N'Guessan; Dina Gbénou; Imorou Yacoubou; Kinde Gazard; Martin Akogbéto

BackgroundThe emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs) and IRS has previously been reported.MethodsThe protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace- 1 mutations were determined by PCR.ResultsStrong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100%) to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%). The molecular M form of An. gambiae was predominant in southern Benin (97%). The kdr mutation was detected in all districts at various frequency (1% to 95%) whereas the Ace-1 mutation was found at a very low frequency (≤ 5%).ConclusionThis study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to pyrethroids for IRS in Benin.


Malaria Journal | 2011

Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

Olayidé Boussari; Aboubakar Sidick; Thibaud Martin; Hilary Ranson; Fabrice Chandre; Martin Akogbéto; Vincent Corbel

BackgroundInsecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.MethodsAnopheles gambiae s.l populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. Anopheles gambiae mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine kdr and Ace.1R allelic frequencies and activity of the detoxification enzymes.ResultsThroughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in An. gambiae s.l. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of An. gambiae s.s. and Anopheles arabiensis. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. Anopheles gambiae s.l. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of 1014F kdr allele was initially showed in An. gambiae from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the L1014S kdr mutation was found in An. arabiensis in Benin. The ace.1R mutation was almost absent in An. gambiae s.l.ConclusionPyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The 1014S kdr allele was first identified in wild population of An. arabiensis hence confirming the expansion of pyrethroid resistance alleles in Africa.


Malaria Journal | 2006

Screening of pesticide residues in soil and water samples from agricultural settings.

Martin Akogbéto; Rousseau Djouaka; Dorothée Kinde-Gazard

BackgroundThe role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings.MethodsLacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms.ResultsResults obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples), a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed.ConclusionToxic factors inhibiting the hatching of anopheles eggs and the growth of larvae are probably pesticide residues from agricultural practices. Samples used during this indirect assay have been stored in the laboratory and will be analysed with HPLC techniques to confirm hypothesis of this study and to identify the various end products found in soil and water samples from agricultural settings under pesticide pressure.


Malaria Journal | 2004

Dosage-dependent effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance

Vincent Corbel; Fabrice Chandre; Cécile Brengues; Martin Akogbéto; Frédéric Lardeux; Jean Marc Hougard; Pierre Guillet

BackgroundThe evolution and spread of pyrethroid resistance in Anopheles gambiae s.s, the major malaria vector in sub-Saharan Africa, is of great concern owing to the importance of pyrethroid-treated nets in the WHO global strategy for malaria control. The impact of kdr (the main pyrethroid-resistance mechanism) on the behaviour of An. gambiae is not well understood. The objective of this study was to determine whether high or low doses of permethrin differ in their resistance-selection effects.MethodsThe effect of permethrin treatment was assessed under laboratory conditions using the tunnel test technique against susceptible, heterozygous and homozygous genotypes. Experimental huts trials were then carried out in Benin to assess the level of personal protection conferred by nets treated with a variety of permethrin concentrations and their impact on the selection for kdr allele.ResultsTunnel tests showed that nets treated with permethrin at 250 and 500 mg/m2 induced higher mortality and blood feeding reduction among susceptible and heterozygous (RS) females as compared to the lower concentration (100 mg/m2). The experimental hut trials showed that the best personal protection was achieved with the highest permethrin concentration (1,000 mg/m2). Mosquito genotyping revealed a non-linear relationship in the survival of kdr susceptible and resistant genotypes with permethrin dosage. Higher dosages (≥250 mg/m2) killed more efficiently the RS genotypes than did lower dosages (50 and 100 mg/m2).ConclusionThis study showed that nets treated with high permethrin concentrations provided better blood feeding prevention against pyrethroid-resistant An. gambiae than did lower concentrations. Permethrin-treated nets seem unlikely to select for pyrethroid resistance in areas where the kdr mutation is rare and present mainly in heterozygous form.

Collaboration


Dive into the Martin Akogbéto's collaboration.

Top Co-Authors

Avatar

Razaki Ossè

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Roseric Azondekon

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Fabrice Chandre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Corbel

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renaud Govoetchan

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Hougard

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge