Martin Anger
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Anger.
Nature | 2008
Oliver H. Tam; Alexei A. Aravin; Paula Stein; Angélique Girard; Elizabeth P. Murchison; Sihem Cheloufi; Emily Hodges; Martin Anger; Ravi Sachidanandam; Richard M. Schultz; Gregory J. Hannon
Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.
Biology of Reproduction | 2000
Wilfried August Kues; Martin Anger; Joseph Wallace Carnwath; David L. Paul; Jan Motlik; Heiner Niemann
Abstract The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6–73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24–72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9–80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 ± 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 ± 5.8% of the cells at the end of G1 stage and 37.0 ± 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.
Biology of Reproduction | 2005
Martin Anger; Paula Stein; Richard M. Schultz
Abstract A master regulator of DNA replication, CDC6 also functions in the DNA-replication checkpoint by preventing DNA rereplication. Cyclin-dependent kinases (CDKs) regulate the amount and localization of CDC6 throughout the cell cycle; CDC6 phosphorylation after DNA replication initiation leads to its proteolysis in yeast or translocation to the cytoplasm in mammals. Overexpression of CDC6 during the late S phase prevents entry into the M phase by activating CHEK1 kinase that then inactivates CDK1/cyclin B, which is essential for the G2/M-phase transition. We analyzed the role of CDC6 during resumption of meiosis in mouse oocytes, which are arrested in the first meiotic prophase with low CDK1/cyclin B activity; this is similar to somatic cells at the G2/M-phase border. Overexpression of CDC6 in mouse oocytes does not prevent resumption of meiosis. The RNA interference-mediated knockdown of CDC6, however, reveals a new and unexpected function for CDC6; namely, it is essential for spindle formation in mouse oocytes.
Biology of Reproduction | 2006
Ludmila G. Romanova; Martin Anger; Olga Zatsepina; Richard M. Schultz
Abstract The step-wise assembly of a functional nucleolus, which occurs over the first few cell cycles during preimplantation development, is poorly understood. In this study, we examined the function of the evolutionary conserved nucleolar protein SURF6 in preimplantation mouse embryo development. Immunocytochemical analyses revealed that the localization of SURF6 was similar but not identical to those of fibrillarin and B23/nucleophosmin 1, which are involved in rRNA processing and ribosome biogenesis in mammalian somatic cells. Surf6 mRNA, which is expressed in oocytes and maternally inherited in the zygote, reached a peak level of expression during the 8-cell stage of embryo development, at which time rDNA is highly transcribed. Knock-down of Surf6 mRNA by RNAi led to a decrease in both the mRNA and protein levels, and resulted in developmental arrest at the 8-cell/morula stage, as well as a decrease in the level of 18S rRNA. These results suggest that Surf6 is essential for mouse preimplantation development, presumably by regulating ribosome biogenesis.
Nature Communications | 2015
Andrej Susor; Denisa Jansova; Renata Cerna; Anna Danylevska; Martin Anger; Tereza Toralova; Radek Malik; Jaroslava Supolikova; Matthew S. Cook; Jeong Su Oh; Michal Kubelka
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation.
PLOS ONE | 2011
Miroslav Hornak; Michal Ješeta; Petra Musilova; Antonin Pavlok; Michal Kubelka; Jan Motlik; Jiri Rubes; Martin Anger
It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH), combined with whole genome amplification (WGA), to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.
Zygote | 2002
Michal Kubelka; Martin Anger; Antonin Pavlok; Jaroslav Kalous; Richard M. Schultz; Jan Motlik
In this study a specific inhibitor of cyclin-dependent kinases (cdks), butyrolactone I (BL I), was used for activation of pig and cattle metaphase II (MII) oocytes. BL I at a concentration of 100 microM was able to induce activation of both pig and cattle MII oocytes in a manner dependent on exposure time; however, precise timing of BL I exposure was required for the best activation results. The optimum activation rates were obtained when cattle MII oocytes were treated for 5 h with BL I and subsequently for 3-11 h in control medium, and pig MII oocytes for 8 h in BL I and then for 8-16 h in control medium; the percentage of activated oocytes after such treatment varied between 55% and 74% and between 53% and 81% for cattle and pig oocytes, respectively. Shorter exposures to BL I led to re-entry of the oocytes to the metaphase state in 35-50% of oocytes, the remaining oocytes forming a pronuclear stage; longer exposure to BL I led to increased numbers of oocytes being abnormal or degenerated. The behaviour of histone H1 kinase and mitogen activated protein (MAP) kinase, also measured during the experiment, reflected the morphological changes in the oocytes: both were inactivated after BL I treatment, though the inactivation of histone H1 kinase occurred 2 h ahead of that of MAP kinase. However, in the oocytes treated for a shorter time with BL I, with the reoccurrence of condensed chromatin in proportion of the oocytes cultured in control medium after BL I treatment, both kinases became reactivated. Taken together, these results suggest the possibility of using BL I for activation and cloning experiments in both species.
Cell and Tissue Research | 2016
Andrej Susor; Denisa Jansova; Martin Anger; Michal Kubelka
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Chromosome Research | 2014
Anna Danylevska; Kristína Kovačovicová; Thuraya Awadová; Martin Anger
Mammalian female gametes frequently suffer from numerical chromosomal aberrations, the main cause of miscarriages and severe developmental defects. The underlying mechanisms responsible for the development of aneuploidy in oocytes are still not completely understood and remain a subject of extensive research. From studies focused on prevalence of aneuploidy in mouse oocytes, it has become obvious that reported rates of aneuploidy are strongly dependent on the method used for chromosome counting. In addition, it seems likely that differences between mouse strains could influence the frequency of aneuploidy as well; however, up till now, such a comparison has not been available. Therefore, in our study, we measured the levels of aneuploidy which has resulted from missegregation in meiosis I, in oocytes of three commonly used mouse strains—CD-1, C3H/HeJ, and C57BL/6. Our results revealed that, although the overall chromosomal numerical aberration rates were similar in all three strains, a different number of oocytes in each strain contained prematurely segregated sister chromatids (PSSC). This indicates that a predisposition for this type of chromosome segregation error in oocyte meiosis I is dependent on genetic background.
Biochemical and Biophysical Research Communications | 2003
Martin Anger; Vitezslav Bryja; Ludmila Jirmanova; Aleš Hampl; Mark Carrington; Jan Motlik; Petr Dvorak; Michal Kubelka
The presence of a form of cyclin A2 with an N-terminal truncation has recently been reported in various murine cell lines and tissues. The truncated cyclin A2 binds to and activates the cyclin-dependent kinase 2 (CDK2). However, CDK2 bound by the truncated cyclin A2 is located in the cytoplasm in contrast to CDK2 bound to full-length cyclin A2, which is in the nucleus. Here, we show that proliferating mouse embryonic stem cells (ES cells) contain very little truncated cyclin A2 but as the cells are induced to differentiate the amount of truncated cyclin A2 increases. The expression pattern of truncated cyclin A2 was the same in p27(Kip1) -/- differentiating ES cells as in the differentiating wild-type cells. We conclude that p27(Kip1) is not necessary for the proteolytic cleavage that gives rise to the truncated form of cyclin A2 in differentiating ES cells and that this post-translational modification is not a function of the cell density but is correlated with differentiation.