Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Bodner is active.

Publication


Featured researches published by Martin Bodner.


Genome Research | 2012

Rapid coastal spread of First Americans: Novel insights from South America's Southern Cone mitochondrial genomes

Martin Bodner; Ugo A. Perego; Gabriela Huber; Liane Fendt; Alexander W. Röck; Bettina Zimmermann; Anna Olivieri; Alberto Gómez-Carballa; Hovirag Lancioni; Norman Angerhofer; María Cecilia Bobillo; Daniel Corach; Scott R. Woodward; Antonio Salas; Alessandro Achilli; Antonio Torroni; Hans-Jürgen Bandelt; Walther Parson

It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.


International Journal of Legal Medicine | 2010

The mtDNA composition of Uzbekistan: a microcosm of Central Asian patterns

Jodi A. Irwin; Abror Ikramov; Jessica L. Saunier; Martin Bodner; Sylvain Amory; Alexander W. Röck; Jennifer E. O’Callaghan; Abdurakhmon Nuritdinov; Sattar Atakhodjaev; Rustam Mukhamedov; Walther Parson; Thomas J. Parsons

In order to better characterize and understand the mtDNA population genetics of Central Asia, the mtDNA control regions of over 1,500 individuals from Uzbekistan have been sequenced. Although all samples were obtained from individuals residing in Uzbekistan, individuals with direct ancestry from neighboring Central Asian countries are included. Individuals of Uzbek ancestry represent five distinct geographic regions of Uzbekistan: Fergana, Karakalpakstan, Khorezm, Qashkadarya, and Tashkent. Individuals with direct ancestry in nearby countries originate from Kazakhstan, Kyrgyzstan, Russia, Afghanistan, Turkmenistan, and Tajikistan. Our data reinforce the evidence of distinct clinal patterns that have been described among Central Asian populations with classical, mtDNA, and Y-chromosomal markers. Our data also reveal hallmarks of recent demographic events. Despite their current close geographic proximity, the populations with ancestry in neighboring countries show little sign of admixture and retain the primary mtDNA patterns of their source populations. The genetic distances and haplogroup distributions among the ethnic populations are more indicative of a broad east–west cline among their source populations than of their relatively small geographic distances from one another in Uzbekistan. Given the significant mtDNA heterogeneity detected, our results emphasize the need for heightened caution in the forensic interpretation of mtDNA data in regions as historically rich and genetically diverse as Central Asia.


PLOS ONE | 2012

Arrival of Paleo-Indians to the Southern Cone of South America: New Clues from Mitogenomes

Michelle de Saint Pierre; Francesca Gandini; Ugo A. Perego; Martin Bodner; Alberto Gómez-Carballa; Daniel Corach; Norman Angerhofer; Scott R. Woodward; Ornella Semino; Antonio Salas; Walther Parson; Mauricio Moraga; Alessandro Achilli; Antonio Torroni; Anna Olivieri

With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (mtDNA) variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j) whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l) and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11–13,000 years) appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking groups.


BMC Evolutionary Biology | 2011

Southeast Asian diversity: first insights into the complex mtDNA structure of Laos

Martin Bodner; Bettina Zimmermann; Alexander W. Röck; Anita Kloss-Brandstätter; David Horst; Basil Horst; Sourideth Sengchanh; Torpong Sanguansermsri; Jürgen Horst; Tanja Krämer; Peter M. Schneider; Walther Parson

BackgroundVast migrations and subsequent assimilation processes have shaped the genetic composition of Southeast Asia, an area of close contact between several major ethnic groups. To better characterize the genetic variation of this region, we analyzed the entire mtDNA control region of 214 unrelated donors from Laos according to highest forensic quality standards. To detail the phylogeny, we inspected selected SNPs from the mtDNA coding region. For a posteriori data quality control, quasi-median network constructions and autosomal STR typing were performed. In order to describe the mtDNA setup of Laos more thoroughly, the data were subjected to population genetic comparisons with 16 East Asian groups.ResultsThe Laos sample exhibited ample mtDNA diversity, reflecting the huge number of ethnic groups listed. We found several new, so far undescribed mtDNA lineages in this dataset and surrounding populations. The Laos population was characteristic in terms of haplotype composition and genetic structure, however, genetic comparisons with other Southeast Asian populations revealed limited, but significant genetic differentiation. Notable differences in the maternal relationship to the major indigenous Southeast Asian ethnolinguistic groups were detected.ConclusionsIn this study, we portray the great mtDNA variety of Laos for the first time. Our findings will contribute to clarify the migration history of the region. They encourage setting up regional and subpopulation databases, especially for forensic applications. The Laotian sequences will be incorporated into the collaborative EMPOP mtDNA database http://www.empop.org upon publication and will be available as the first mtDNA reference data for this country.


BMC Evolutionary Biology | 2010

Human evolution in Siberia: from frozen bodies to ancient DNA

Eric Crubézy; Sylvain Amory; Christine Keyser; Caroline Bouakaze; Martin Bodner; Morgane Gibert; Alexander W. Röck; Walther Parson; Anatoly Alexeev; Bertrand Ludes

BackgroundThe Yakuts contrast strikingly with other populations from Siberia due to their cattle- and horse-breeding economy as well as their Turkic language. On the basis of ethnological and linguistic criteria as well as population genetic studies, it has been assumed that they originated from South Siberian populations. However, many questions regarding the origins of this intriguing population still need to be clarified (e.g. the precise origin of paternal lineages and the admixture rate with indigenous populations). This study attempts to better understand the origins of the Yakuts by performing genetic analyses on 58 mummified frozen bodies dated from the 15th to the 19th century, excavated from Yakutia (Eastern Siberia).ResultsHigh quality data were obtained for the autosomal STRs, Y-chromosomal STRs and SNPs and mtDNA due to exceptional sample preservation. A comparison with the same markers on seven museum specimens excavated 3 to 15 years ago showed significant differences in DNA quantity and quality. Direct access to ancient genetic data from these molecular markers combined with the archaeological evidence, demographical studies and comparisons with 166 contemporary individuals from the same location as the frozen bodies helped us to clarify the microevolution of this intriguing population.ConclusionWe were able to trace the origins of the male lineages to a small group of horse-riders from the Cis-Baïkal area. Furthermore, mtDNA data showed that intermarriages between the first settlers with Evenks women led to the establishment of genetic characteristics during the 15th century that are still observed today.


Forensic Science International-genetics | 2015

Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations

Rebecca S. Just; Melissa Scheible; Spence A. Fast; Kimberly Sturk-Andreaggi; Alexander W. Röck; Jocelyn M. Bush; Jennifer L. Higginbotham; Michelle A. Peck; Joseph D. Ring; Gabriela E. Huber; Catarina Xavier; Christina Strobl; Elizabeth A. Lyons; Toni M. Diegoli; Martin Bodner; Liane Fendt; Petra Kralj; Simone Nagl; Daniela Niederwieser; Bettina Zimmermann; Walther Parson; Jodi A. Irwin

Though investigations into the use of massively parallel sequencing technologies for the generation of complete mitochondrial genome (mtGenome) profiles from difficult forensic specimens are well underway in multiple laboratories, the high quality population reference data necessary to support full mtGenome typing in the forensic context are lacking. To address this deficiency, we have developed 588 complete mtGenome haplotypes, spanning three U.S. population groups (African American, Caucasian and Hispanic) from anonymized, randomly-sampled specimens. Data production utilized an 8-amplicon, 135 sequencing reaction Sanger-based protocol, performed in semi-automated fashion on robotic instrumentation. Data review followed an intensive multi-step strategy that included a minimum of three independent reviews of the raw data at two laboratories; repeat screenings of all insertions, deletions, heteroplasmies, transversions and any additional private mutations; and a check for phylogenetic feasibility. For all three populations, nearly complete resolution of the haplotypes was achieved with full mtGenome sequences: 90.3-98.8% of haplotypes were unique per population, an improvement of 7.7-29.2% over control region sequencing alone, and zero haplotypes overlapped between populations. Inferred maternal biogeographic ancestry frequencies for each population and heteroplasmy rates in the control region were generally consistent with published datasets. In the coding region, nearly 90% of individuals exhibited length heteroplasmy in the 12418-12425 adenine homopolymer; and despite a relatively high rate of point heteroplasmy (23.8% of individuals across the entire molecule), coding region point heteroplasmies shared by more than one individual were notably absent, and transversion-type heteroplasmies were extremely rare. The ratio of nonsynonymous to synonymous changes among point heteroplasmies in the protein-coding genes (1:1.3) and average pathogenicity scores in comparison to data reported for complete substitutions in previous studies seem to provide some additional support for the role of purifying selection in the evolution of the human mtGenome. Overall, these thoroughly vetted full mtGenome population reference data can serve as a standard against which the quality and features of future mtGenome datasets (especially those developed via massively parallel sequencing) may be evaluated, and will provide a solid foundation for the generation of complete mtGenome haplotype frequency estimates for forensic applications.


Forensic Science International-genetics | 2016

Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER)

Martin Bodner; Ingo Bastisch; John M. Butler; Rolf Fimmers; Peter Gill; Leonor Gusmão; Niels Morling; C. Phillips; Mechthild Prinz; Peter M. Schneider; Walther Parson

The statistical evaluation of autosomal Short Tandem Repeat (STR) genotypes is based on allele frequencies. These are empirically determined from sets of randomly selected human samples, compiled into STR databases that have been established in the course of population genetic studies. There is currently no agreed procedure of performing quality control of STR allele frequency databases, and the reliability and accuracy of the data are largely based on the responsibility of the individual contributing research groups. It has been demonstrated with databases of haploid markers (EMPOP for mitochondrial mtDNA, and YHRD for Y-chromosomal loci) that centralized quality control and data curation is essential to minimize error. The concepts employed for quality control involve software-aided likelihood-of-genotype, phylogenetic, and population genetic checks that allow the researchers to compare novel data to established datasets and, thus, maintain the high quality required in forensic genetics. Here, we present STRidER (http://strider.online), a publicly available, centrally curated online allele frequency database and quality control platform for autosomal STRs. STRidER expands on the previously established ENFSI DNA WG STRbASE and applies standard concepts established for haploid and autosomal markers as well as novel tools to reduce error and increase the quality of autosomal STR data. The platform constitutes a significant improvement and innovation for the scientific community, offering autosomal STR data quality control and reliable STR genotype estimates.


Forensic Science International-genetics | 2012

MtDNA diversity of Ghana: a forensic and phylogeographic view

Liane Fendt; Alexander W. Röck; Bettina Zimmermann; Martin Bodner; Thorsten Thye; Frank Tschentscher; Ellis Owusu-Dabo; Tanja Göbel; Peter M. Schneider; Walther Parson

West Africa is characterized by a migration history spanning more than 150,000 years. Climate changes but also political circumstances were responsible for several early but also recent population movements that shaped the West African mitochondrial landscape. The aim of the study was to establish a Ghanaian mtDNA dataset for forensic purposes and to investigate the diversity of the Ghanaian population sample with respect to surrounding populations. We sequenced full mitochondrial control regions of 193 Akan people from Ghana and excluded two apparently close maternally related individuals due to preceding kinship testing. The remaining dataset comprising 191 sequences was applied as etalon for quasi-median network analysis and was subsequently combined with 99 additional control region sequences from surrounding West African countries. All sequences were incorporated into the EMPOP database enriching the severely underrepresented African mtDNA pool. For phylogeographic considerations, the Ghanaian haplotypes were compared to those of 19 neighboring populations comprising a total number of 6198 HVS1 haplotypes. We found extensive genetic admixture between the Ghanaian lineages and those from adjacent populations diminishing with geographical distance. The extent of genetic admixture reflects the long but also recent history of migration waves within West Africa mainly caused by changing environmental conditions. Also, evidence for potential socio-economical influences such as trade routes is provided by the occurrence of U6b and U6d sequences found in Dubai but also in Tunisia leading to the African West Coast via Mauritania and Senegal but also via Niger, Nigeria to Cameroon.


Forensic Science International-genetics | 2011

Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases

Martin Bodner; Jodi A. Irwin; Michael D. Coble; Walther Parson

Reliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and database searches, for forensic applications, for reconstructions of human migrations and for correct interpretation of mtDNA mutations in medical genetics. There is continuing effort to enhance the number of worldwide population samples in order to contribute to a better understanding of human mtDNA variation. This has often lead to the analysis of convenience samples collected for other purposes, which might not meet the quality requirement of random sampling for mtDNA data sets. Here, we introduce an additional quality control means that deals with one aspect of this limitation: by combining autosomal short tandem repeat (STR) marker with mtDNA information, it helps to avoid the bias introduced by related individuals included in the same (small) sample. By STR analysis of individuals sharing their mitochondrial haplotype, pedigree construction and subsequent software-assisted calculation of likelihood ratios based on the allele frequencies found in the population, closely maternally related individuals can be identified and excluded. We also discuss scenarios that allow related individuals in the same set. An ideal population sample would be representative for its population: this new approach represents another contribution towards this goal.


BMC Genomics | 2015

Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity

Sibylle M. Gomes; Martin Bodner; L. Souto; Bettina Zimmermann; Gabriela Huber; Christina Strobl; Alexander W. Röck; Alessandro Achilli; Anna Olivieri; Antonio Torroni; Francisco Corte-Real; Walther Parson

BackgroundDistinct, partly competing, “waves” have been proposed to explain human migration in(to) today’s Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice.ResultsIn this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya.ConclusionsThe temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated “later” events of (South) East Asian origin pinpoints a highly dynamic migratory phase.

Collaboration


Dive into the Martin Bodner's collaboration.

Top Co-Authors

Avatar

Walther Parson

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Alexander W. Röck

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Bettina Zimmermann

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Gabriela Huber

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Liane Fendt

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Christina Strobl

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Torroni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Burkhard Berger

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge