Martin Breitbach
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Breitbach.
Nature Medicine | 2004
Jens Martin Nygren; Stefan Jovinge; Martin Breitbach; Petter Säwén; Wilhelm Röll; Jürgen Hescheler; Jalal Taneera; Bernd K. Fleischmann; Sten Eirik W. Jacobsen
Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow–derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow–derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.
Nature | 2007
Wilhelm Roell; Thorsten Lewalter; Philipp Sasse; Yvonne N. Tallini; Bum-Rak Choi; Martin Breitbach; Robert Doran; Ulrich M. Becher; Seong-min Hwang; Toktam Bostani; Julia von Maltzahn; Shaun Reining; Britta Eiberger; Bethann Gabris; Alexander Pfeifer; Armin Welz; Klaus Willecke; Guy Salama; Jan W. Schrickel; Michael I. Kotlikoff; Bernd K. Fleischmann
Ventricular tachyarrhythmias are the main cause of sudden death in patients after myocardial infarction. Here we show that transplantation of embryonic cardiomyocytes (eCMs) in myocardial infarcts protects against the induction of ventricular tachycardia (VT) in mice. Engraftment of eCMs, but not skeletal myoblasts (SMs), bone marrow cells or cardiac myofibroblasts, markedly decreased the incidence of VT induced by in vivo pacing. eCM engraftment results in improved electrical coupling between the surrounding myocardium and the infarct region, and Ca2+ signals from engrafted eCMs expressing a genetically encoded Ca2+ indicator could be entrained during sinoatrial cardiac activation in vivo. eCM grafts also increased conduction velocity and decreased the incidence of conduction block within the infarct. VT protection is critically dependent on expression of the gap-junction protein connexin 43 (Cx43; also known as Gja1): SMs genetically engineered to express Cx43 conferred a similar protection to that of eCMs against induced VT. Thus, engraftment of Cx43-expressing myocytes has the potential to reduce life-threatening post-infarct arrhythmias through the augmentation of intercellular coupling, suggesting autologous strategies for cardiac cell-based therapy.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Yvonne N. Tallini; Kai Su Greene; Michael Craven; Alyson Spealman; Martin Breitbach; James P. Smith; Patricia J. Fisher; Michele Steffey; Michael Hesse; Robert Doran; Ashley K. Woods; Babu Singh; Andrew Yen; Bernd K. Fleischmann; Michael I. Kotlikoff
Directed differentiation of embryonic stem cells indicates that mesodermal lineages in the mammalian heart (cardiac, endothelial, and smooth muscle cells) develop from a common, multipotent cardiovascular precursor. To isolate and characterize the lineage potential of a resident pool of cardiovascular progenitor cells (CPcs), we developed BAC transgenic mice in which enhanced green fluorescent protein (EGFP) is placed under control of the c-kit locus (c-kitBAC-EGFP mice). Discrete c-kit-EGFP+ cells were observed at different stages of differentiation in embryonic hearts, increasing in number to a maximum at about postnatal day (PN) 2; thereafter, EGFP+ cells declined and were rarely observed in the adult heart. EGFP+ cells purified from PN 0–5 hearts were nestin+ and expanded in culture; 67% of cells were fluorescent after 9 days. Purified cells differentiated into endothelial, cardiac, and smooth muscle cells, and differentiation could be directed by specific growth factors. CPc-derived cardiac myocytes displayed rhythmic beating and action potentials characteristic of multiple cardiac cell types, similar to ES cell-derived cardiomyocytes. Single-cell dilution studies confirmed the potential of individual CPcs to form all 3 cardiovascular lineages. In adult hearts, cryoablation resulted in c-kit-EGFP+ expression, peaking 7 days postcryolesion. Expression occurred in endothelial and smooth muscle cells in the revascularizing infarct, and in terminally differentiated cardiomyocytes in the border zone surrounding the infarct. Thus, c-kit expression marks CPc in the neonatal heart that are capable of directed differentiation in vitro; however, c-kit expression in cardiomyocytes in the adult heart after injury does not identify cardiac myogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Sophy A. Jesty; Michele Steffey; Frank K. Lee; Martin Breitbach; Michael Hesse; Shaun Reining; Jane C. Lee; Robert Doran; Alexander Yu. Nikitin; Bernd K. Fleischmann; Michael I. Kotlikoff
We examined the myogenic response to infarction in neonatal and adult mice to determine the role of c-kit+ cardiovascular precursor cells (CPC) that are known to be present in early heart development. Infarction of postnatal day 1–3 c-kitBAC-EGFP mouse hearts induced the localized expansion of (c-kit)EGFP+ cells within the infarct, expression of the c-kit and Nkx2.5 mRNA, myogenesis, and partial regeneration of the infarction, with (c-kit)EGFP+ cells adopting myogenic and vascular fates. Conversely, infarction of adult mice resulted in a modest induction of (c-kit)EGFP+ cells within the infarct, which did not express Nkx2.5 or undergo myogenic differentiation, but adopted a vascular fate within the infarction, indicating a lack of authentic CPC. Explantation of infarcted neonatal and adult heart tissue to scid mice, and adoptive transfer of labeled bone marrow, confirmed the cardiac source of myogenic (neonate) and angiogenic (neonate and adult) cells. FACS-purified (c-kit)EGFP+/(αMHC)mCherry− (noncardiac) cells from microdissected infarcts within 6 h of infarction underwent cardiac differentiation, forming spontaneously beating myocytes in vitro; cre/LoxP fate mapping identified a noncardiac population of (c-kit)EGFP+ myocytes within infarctions, indicating that the induction of undifferentiated precursors contributes to localized myogenesis. Thus, adult postinfarct myogenic failure is likely not due to a context-dependent restriction of precursor differentiation, and c-kit induction following injury of the adult heart does not define precursor status.
Nature Cell Biology | 2008
Jens Martin Nygren; Karina Liuba; Martin Breitbach; Simon Stott; Lina Thorén; Wilhelm Roell; Caroline Geisen; Philipp Sasse; Deniz Kirik; Anders Björklund; Claus Nerlov; Bernd K. Fleischmann; Stefan Jovinge; Sten Eirik W. Jacobsen
Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion hybrids, but almost exclusively in response to injuries or inflammation.
Cardiovascular Research | 2008
Philipp Sasse; Daniela Malan; Michaela Fleischmann; Wilhelm Roell; Erika Gustafsson; Toktam Bostani; Yun Fan; Thomas Kolbe; Martin Breitbach; Klaus Addicks; Armin Welz; G. Brem; Juergen Hescheler; Attila Aszodi; Mercedes Costell; Wilhelm Bloch; Bernd K. Fleischmann
AIMS Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function. METHODS AND RESULTS Perlecan-deficient murine embryonic stem cells were used to investigate the myofibrillar network and the electrophysiological properties of single cardiomyocytes. The mechanical stability of the developing perlecan-deficient mouse hearts was analysed by microinjecting fluorescent-labelled dextran. Maturation and formation of basement membranes and cell-cell contacts were investigated by electron microscopy, immunohistochemistry, and western blotting. Sarcomere formation and cellular functional properties were unaffected in perlecan-deficient cardiomyocytes. However, the intraventricular dye injection experiments revealed mechanical instability of the early embryonic mouse heart muscle wall before embryonic day 10.5 (E10.5). Accordingly, perlecan-null embryonic hearts contained lower amounts of the critical basement membrane components, collagen IV and laminins. Furthermore, basement membranes were absent in perlecan-null cardiomoycytes whereas adherens junctions formed and matured around E9.5. Infarcted hearts from perlecan heterozygous mice displayed reduced heart function when compared with wild-type hearts. CONCLUSION We propose that perlecan plays an important role in maintaining the integrity during cardiac development and is important for heart function in the adult heart after injury.
PLOS ONE | 2013
Leonie E. M. Paulis; Alexandra M. Klein; Alexander Ghanem; Tessa Geelen; Bram F. Coolen; Martin Breitbach; Katrin Zimmermann; Klaas Nicolay; Bernd K. Fleischmann; Wilhelm Roell; Gustav J. Strijkers
Aims Controversy exists in regard to the beneficial effects of transplanting cardiac or somatic progenitor cells upon myocardial injury. We have therefore investigated the functional short- and long-term consequences after intramyocardial transplantation of these cell types in a murine lesion model. Methods and Results Myocardial infarction (MI) was induced in mice (n = 75), followed by the intramyocardial injection of 1−2×105 luciferase- and GFP-expressing embryonic cardiomyocytes (eCMs), skeletal myoblasts (SMs), mesenchymal stem cells (MSCs) or medium into the infarct. Non-treated healthy mice (n = 6) served as controls. Bioluminescence and fluorescence imaging confirmed the engraftment and survival of the cells up to seven weeks postoperatively. After two weeks MRI was performed, which showed that infarct volume was significantly decreased by eCMs only (14.8±2.2% MI+eCM vs. 26.7±1.6% MI). Left ventricular dilation was significantly decreased by transplantation of any cell type, but most efficiently by eCMs. Moreover, eCM treatment increased the ejection fraction and cardiac output significantly to 33.4±2.2% and 22.3±1.2 ml/min. In addition, this cell type exclusively and significantly increased the end-systolic wall thickness in the infarct center and borders and raised the wall thickening in the infarct borders. Repetitive echocardiography examinations at later time points confirmed that these beneficial effects were accompanied by better survival rates. Conclusion Cellular cardiomyoplasty employing contractile and electrically coupling embryonic cardiomyocytes (eCMs) into ischemic myocardium provoked significantly smaller infarcts with less adverse remodeling and improved cardiac function and long-term survival compared to transplantation of somatic cells (SMs and MSCs), thereby proving that a cardiomyocyte phenotype is important to restore myocardial function.
Current protocols in stem cell biology | 2010
Christopher J. Fuegemann; Ajoy K. Samraj; Stuart Walsh; Bernd K. Fleischmann; Stefan Jovinge; Martin Breitbach
Herein, we describe two protocols for the in vitro differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. mESCs are pluripotent and can be differentiated into cells of all three germ layers, including cardiomyocytes. The methods described here facilitate the differentiation of mESCs into the different cardiac subtypes (atrial-, ventricular-, nodal-like cells). The duration of cell culture determines whether preferentially early- or late-developmental stage cardiomyocytes can be obtained preferentially. This approach allows the investigation of cardiomyocyte development and differentiation in vitro, and also allows for the enrichment and isolation of physiologically intact cardiomyocytes for transplantation purposes.
Life Sciences | 2015
Jan C. Heinemann; Georg D. Duerr; Katharina Keppel; Martin Breitbach; Bernd K. Fleischmann; Andreas Zimmer; Sven Wehner; Armin Welz; Oliver Dewald
AIMS The endocannabinoid system and cannabinoid receptor 2 (CB2 receptor) have been associated with modulation of inflammatory response and myocardial adaptation after ischemic injury. In order to elucidate CB2 receptor-related effects during cellular interactions, we investigated cardiomyocyte survival and macrophage function in vitro. MAIN METHODS Murine embryonic (eCM) and adult (CM) cardiomyocytes, murine macrophages (MO), and their subtypes M1 (M1-MO) and M2 (M2-MO) were derived from wildtype- (WT) and CB2 receptor-deficient (Cnr2(-/-)) mice. Cells were cultured separately or in co-culture under normoxia or hypoxia (2% O2) and pro-inflammatory stimulation using interferon (IFN)γ. Besides immunohistochemistry, we also measured mRNA expression (Taqman®) and performed FACS-analysis of cardiomyocytes. Macrophage migration was assessed using Boyden chamber assay. KEY FINDINGS We found a significant induction of CB2 receptor mRNA and protein in murine eCM as well as M1- and M2-MO in vitro following cultivation under hypoxia or stimulation with IFNγ. A significantly higher amount of apoptotic Cnr2(-/-)-CMs was found after incubation under hypoxia when compared to WT-CMs. We observed a significantly stronger migration potential in Cnr2(-/-)-M1-MOs towards the supernatant of apoptotic CM, than in corresponding WT-cells. Co-culture revealed a significantly higher loss of eCMs and induction of their apoptosis after cultivation with Cnr2(-/-)-M1-MOs. Production of TNF-α in M1-MOs was dependent on CB2 receptor stimulation by anandamide. SIGNIFICANCE Our data provide novel insights into CB2 receptor-mediated protection of cardiomyocytes during hypoxia and pro-inflammatory stimulation. We show CB2 receptor-dependent effects on migration and function of M1-MOs in interaction with cardiomyocytes, thereby influencing their survival.
Experimental Cell Research | 2009
Ulrich M. Becher; Martin Breitbach; Philipp Sasse; Stephan Garbe; Peter F.M. van der Ven; Dieter O. Fürst; Bernd K. Fleischmann
Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.