Martin Burkhart
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Burkhart.
mobile ad hoc networking and computing | 2004
Martin Burkhart; Pascal von Rickenbach; Rogert Wattenhofer; Aaron Zollinger
Topology control in ad-hoc networks tries to lower node energy consumption by reducing transmission power and by confining interference, collisions and consequently retransmissions. Commonly low interference is claimed to be a consequence to sparseness of the resulting topology. In this paper we disprove this implication. In contrast to most of the related work claiming to solve the interference issue by graph sparseness without providing clear argumentation or proofs, we provide a concise and intuitive definition of interference. Based on this definition we show that most currently proposed topology control algorithms do not effectively constrain interference. Furthermore we propose connectivity-preserving an spanner constructions that are interference-minimal.
acm special interest group on data communication | 2010
Martin Burkhart; Dominik Schatzmann; Brian Trammell; Elisa Boschi; Bernhard Plattner
In recent years, academic literature has analyzed many attacks on network trace anonymization techniques. These attacks usually correlate external information with anonymized data and successfully de-anonymize objects with distinctive signatures. However, analyses of these attacks still underestimate the real risk of publishing anonymized data, as the most powerful attack against anonymization is traffic injection. We demonstrate that performing live traffic injection attacks against anonymization on a backbone network is not difficult, and that potential countermeasures against these attacks, such as traffic aggregation, randomization or field generalization, are not particularly effective. We then discuss tradeoffs of the attacker and defender in the so-called injection attack space. An asymmetry in the attack space significantly increases the chance of a successful de-anonymization through lengthening the injected traffic pattern. This leads us to re-examine the role of network data anonymization. We recommend a unified approach to data sharing, which uses anonymization as a part of a technical, legal, and social approach to data protection in the research and operations communities.
passive and active network measurement | 2009
Bernhard Tellenbach; Martin Burkhart; Didier Sornette; Thomas Maillart
Tracking changes in feature distributions is very important in the domain of network anomaly detection. Unfortunately, these distributions consist of thousands or even millions of data points. This makes tracking, storing and visualizing changes over time a difficult task. A standard technique for capturing and describing distributions in a compact form is the Shannon entropy analysis. Its use for detecting network anomalies has been studied in-depth and several anomaly detection approaches have applied it with considerable success. However, reducing the information about a distribution to a single number deletes important information such as the nature of the change or it might lead to overlooking a large amount of anomalies entirely. In this paper, we show that a generalized form of entropy is better suited to capture changes in traffic features, by exploring different moments. We introduce the Traffic Entropy Spectrum (TES) to analyze changes in traffic feature distributions and demonstrate its ability to characterize the structure of anomalies using traffic traces from a large ISP.
Computer Networks | 2011
Bernhard Tellenbach; Martin Burkhart; Dominik Schatzmann; David Gugelmann; Didier Sornette
The accurate detection and classification of network anomalies based on traffic feature distributions is still a major challenge. Together with volume metrics, traffic feature distributions are the primary source of information of approaches scalable to high-speed and large scale networks. In previous work, we proposed to use the Tsallis entropy based traffic entropy spectrum (TES) to capture changes in specific activity regions, such as the region of heavy-hitters or rare elements. Our preliminary results suggested that the TES does not only provide more details about an anomaly but might also be better suited for detecting them than traditional approaches based on Shannon entropy. We refine the TES and propose a comprehensive anomaly detection and classification system called the entropy telescope. We analyze the importance of different entropy features and refute findings of previous work reporting a supposedly strong correlation between different feature entropies and provide an extensive evaluation of our entropy telescope. Our evaluation with three different detection methods (Kalman filter, PCA, KLE), one classification method (SVM) and a rich set of anomaly models and real backbone traffic demonstrates the superiority of the refined TES approach over TES and the classical Shannon-only approaches. For instance, we found that when switching from Shannon to the refined TES approach, the PCA method detects small to medium sized anomalies up to 20% more accurately. Classification accuracy is improved by up to 19% when switching from Shannon-only to TES and by another 8% when switching from TES to the refined TES approach. To complement our evaluation, we run the entropy telescope on one month of backbone traffic finding that most prevalent anomalies are different types of scanning (69-84%) and reflector DDoS attacks (15-29%).
computer and communications security | 2008
Martin Burkhart; Daniela Brauckhoff; Martin May; Elisa Boschi
Network operators are reluctant to share traffic data due to security and privacy concerns. Consequently, there is a lack of publicly available traces for validating and generalizing the latest results in network and security research. Anonymization is a possible solution in this context; however, it is unclear how the sanitization of data preserves characteristics important for traffic analysis. In addition, the privacy-preserving property of state-of-the-art IP address anonymization techniques has come into question by recent attacks that successfully identified a large number of hosts in anonymized traces. In this paper, we examine the tradeoff between data utility for anomaly detection and the risk of host identification for IP address truncation. Specifically, we analyze three weeks of unsampled and non-anonymized network traces from a medium-sized backbone network to assess data utility. The risk of de-anonymizing individual IP addresses is formally evaluated, using a metric based on conditional entropy. Our results indicate that truncation effectively prevents host identification but degrades the utility of data for anomaly detection. However, the degree of degradation depends on the metric used and whether network-internal or external addresses are considered. Entropy metrics are more resistant to truncation than unique counts and the detection quality of anomalies degrades much faster in internal addresses than in external addresses. In particular, the usefulness of internal address counts is lost even for truncation of only 4 bits whereas utility of external address entropy is virtually unchanged even for truncation of 20 bits.
passive and active network measurement | 2011
Brian Trammell; Bernhard Tellenbach; Dominik Schatzmann; Martin Burkhart
In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.
ACM Transactions on Information and System Security | 2011
Martin Burkhart; Xenofontas A. Dimitropoulos
Today, there is a fundamental imbalance in cybersecurity. While attackers act more and more globally and coordinated, network defense is limited to examine local information only due to privacy concerns. To overcome this privacy barrier, we use secure multiparty computation (MPC) for the problem of aggregating network data from multiple domains. We first optimize MPC comparison operations for processing high volume data in near real-time by not enforcing protocols to run in a constant number of synchronization rounds. We then implement a complete set of basic MPC primitives in the SEPIA library. For parallel invocations, SEPIAs basic operations are between 35 and several hundred times faster than those of comparable MPC frameworks. Using these operations, we develop four protocols tailored for distributed network monitoring and security applications: the entropy, distinct count, event correlation, and top-k protocols. Extensive evaluation shows that the protocols are suitable for near real-time data aggregation. For example, our top-k protocol PPTKS accurately aggregates counts for 180,000 distributed IP addresses in only a few minutes. Finally, we use SEPIA with real traffic data from 17 customers of a backbone network to collaboratively detect, analyze, and mitigate distributed anomalies. Our work follows a path starting from theory, going to system design, performance evaluation, and ending with measurement. Along this way, it makes a first effort to bridge two very disparate worlds: MPC theory and network monitoring and security practices.
traffic monitoring and analysis | 2011
Fabio Ricciato; Martin Burkhart
Privacy-preserving techniques for distributed computation have been proposed recently as a promising framework in collaborative inter-domain network monitoring. Several different approaches exist to solve such class of problems, e.g., Homomorphic Encryption (HE) and Secure Multiparty Computation (SMC) based on Shamir’s Secret Sharing algorithm (SSS). Such techniques are complete from a computation-theoretic perspective: given a set of private inputs, it is possible to perform arbitrary computation tasks without revealing any of the intermediate results. In this paper we advocate the use of “elementary” (as opposite to “complete“) Secure Multiparty Computation (E-SMC) procedures for traffic monitoring. E-SMC supports only simple computations with private input and public output, i.e., they can not handle secret input nor secret (intermediate) output. The proposed simplification brings a dramatic reduction in complexity and enables massive-scale implementation with acceptable delay and overhead. Notwithstanding their simplicity, we claim that a simple additive E-SMC scheme is sufficient to perform many computation tasks of practical relevance to collaborative network monitoring, such as anonymous publishing and set operations.
usenix security symposium | 2010
Martin Burkhart; Mario Strasser; Dilip Many; Xenofontas A. Dimitropoulos
international conference on computer communications and networks | 2010
Martin Burkhart; Xenofontas A. Dimitropoulos