Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin C. Wright is active.

Publication


Featured researches published by Martin C. Wright.


Proteomics | 2002

Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology.

Shawn Weng; Ke Gu; Philip W. Hammond; Peter Lohse; Cecil Rise; Richard W. Wagner; Martin C. Wright; Robert G. Kuimelis

An mRNA‐protein fusion consists of a polypeptide covalently linked to its corresponding mRNA. These species, prepared individually or en masse by in vitro translation with a modified mRNA conjugate (the PROfusion™ process), link phenotype to genotype and enable powerful directed evolution schemes. We have exploited the informational content of the nucleic acid component of the mRNA‐protein fusion to create an addressable protein microarray that self‐assembles via hybridization to surface‐bound DNA capture probes. The nucleic acid component not only directs the mRNA‐protein fusion to the proper coordinate of the microarray, but also positions the protein in a uniform orientation. We demonstrate the feasibility of this protein chip concept with several mRNA‐protein fusions, each possessing a unique peptide epitope sequence. These addressable proteins could be visualized on the microarray both by autoradiography and highly specific monoclonal antibody binding. The anchoring of the protein to the chip surface is surprisingly robust, and the system is sensitive enough to detect sub‐attomole quantities of displayed protein without signal amplification. Such protein arrays should be useful for functional screening in massively parallel formats, as well as other applications involving immobilized peptides and proteins.


mAbs | 2011

A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor.

Emanuel Sl; Engle Lj; Chao G; Zhu Rr; Cao C; Lin Z; Yamniuk Ap; Hosbach J; Brown J; Fitzpatrick E; Jochem Gokemeijer; Morin P; Brent Morse; Irvith M. Carvajal; Fabrizio D; Martin C. Wright; Das Gupta R; Michael L. Gosselin; Cataldo D; Ryseck Rp; Doyle Ml; Wong Tw; Ray Camphausen; Cload St; Marsh Hn; Gottardis Mm; Eric Furfine

Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.


mAbs | 2010

Anti-tumor effect of CT-322 as an Adnectin inhibitor of vascular endothelial growth factor receptor-2

Roni Mamluk; Irvith M. Carvajal; Brent Morse; Henry K Wong; Janette Abramowitz; Sharon Aslanian; Ai-Ching Lim; Jochem Gokemeijer; Michael J. Storek; Joonsoo Lee; Michael L. Gosselin; Martin C. Wright; Ray Camphausen; Jack Wang; Yan Chen; Kathy D. Miller; Kerry Sanders; Sarah Short; Jeff Sperinde; Gargi Prasad; Stephen Williams; Robert S. Kerbel; John M.L. Ebos; Anthony J. Mutsaers; John Mendlein; Alan S. Harris; Eric Furfine

CT-322 is a new anti-angiogenic therapeutic agent based on an engineered variant of the tenth type III domain of human fibronectin, i.e., an AdnectinTM, designed to inhibit vascular endothelial growth factor receptor (VEGFR)-2. This PEGylated Adnectin was developed using an mRNA display technology. CT-322 bound human VEGFR-2 with high affinity (KD, 11 nM), but did not bind VEGFR-1 or VEGFR-3 at concentrations up to 100 nM, as determined by surface plasmon resonance studies. Western blot analysis showed that CT-322 blocked VEGF-induced phosphorylation of VEGFR-2 and mitogen-activated protein kinase in human umbilical vascular endothelial cells. CT-322 significantly inhibited the growth of human tumor xenograft models of colon carcinoma and glioblastoma at doses of 15-60 mg/kg administered 3 times/week. Anti-tumor effects of CT-322 were comparable to those of sorafenib or sunitinib, which inhibit multiple kinases, in a colon carcinoma xenograft model, although CT-322 caused less overt adverse effects than the kinase inhibitors. CT-322 also enhanced the anti-tumor activity of the chemotherapeutic agent temsirolimus in the colon carcinoma model. The high affinity and specificity of CT-322 binding to VEGFR-2 and its anti-tumor activities establish CT-322 as a promising anti-angiogenic therapeutic agent. Our results further suggest that Adnectins are an important new class of targeted biologics that can be developed as potential treatments for a wide variety of diseases.


Structure | 2012

Structures of adnectin/protein complexes reveal an expanded binding footprint.

Vidhyashankar Ramamurthy; Stanley R. Krystek; Alexander Bush; Anzhi Wei; Stuart Emanuel; Ruchira Das Gupta; Ahsen Janjua; Lin Cheng; Melissa Murdock; Bozena Abramczyk; Daniel Cohen; Zheng Lin; Paul E. Morin; Jonathan Davis; Michael Dabritz; Douglas C. McLaughlin; Katie A. Russo; Ginger Chao; Martin C. Wright; Victoria Jenny; Linda Engle; Eric Furfine; Steven Sheriff

Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin (¹⁰Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three ¹⁰Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the β strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these β strand interactions, indicating that these nonloop residues can expand the available binding footprint.


The Journal of Nuclear Medicine | 2017

Synthesis and Biologic Evaluation of a Novel 18F-Labeled Adnectin as a PET Radioligand for Imaging PD-L1 Expression

David Donnelly; R. Adam Smith; Paul E. Morin; Dasa Lipovsek; Jochem Gokemeijer; Daniel Cohen; Virginie Lafont; Tritin Tran; Erin L. Cole; Martin C. Wright; Joonyoung Kim; Adrienne Pena; Daniel Kukral; Douglas D. Dischino; Patrick L. Chow; Jinping Gan; Olufemi Adelakun; Xi-Tao Wang; Kai Cao; David K. Leung; Samuel J. Bonacorsi; Wendy Hayes

The programmed death protein (PD-1) and its ligand (PD-L1) play critical roles in a checkpoint pathway cancer cells exploit to evade the immune system. A same-day PET imaging agent for measuring PD-L1 status in primary and metastatic lesions could be important for optimizing drug therapy. Herein, we have evaluated the tumor targeting of an anti–PD-L1 adnectin after 18F-fluorine labeling. Methods: An anti–PD-L1 adnectin was labeled with 18F in 2 steps. This synthesis featured fluorination of a novel prosthetic group, followed by a copper-free click conjugation to a modified adnectin to generate 18F-BMS-986192. 18F-BMS-986192 was evaluated in tumors using in vitro autoradiography and PET with mice bearing bilateral PD-L1–negative (PD-L1(–)) and PD-L1–positive (PD-L1(+)) subcutaneous tumors. 18F-BMS-986192 was evaluated for distribution, binding, and radiation dosimetry in a healthy cynomolgus monkey. Results: 18F-BMS-986192 bound to human and cynomolgus PD-L1 with a dissociation constant of less than 35 pM, as measured by surface plasmon resonance. This adnectin was labeled with 18F to yield a PET radioligand for assessing PD-L1 expression in vivo. 18F-BMS-986192 bound to tumor tissues as a function of PD-L1 expression determined by immunohistochemistry. Radioligand binding was blocked in a dose-dependent manner. In vivo PET imaging clearly visualized PD-L1 expression in mice implanted with PD-L1(+), L2987 xenograft tumors. Two hours after dosing, a 3.5-fold-higher uptake (2.41 ± 0.29 vs. 0.82 ± 0.11 percentage injected dose per gram, P < 0.0001) was observed in L2987 than in control HT-29 (PD-L1(–)) tumors. Coadministration of 3 mg/kg ADX_5322_A02 anti–PD-L1 adnectin reduced tumor uptake at 2 h after injection by approximately 70%, whereas HT-29 uptake remained unchanged, demonstrating PD-L1–specific binding. Biodistribution in a nonhuman primate showed binding in the PD-L1–rich spleen, with rapid blood clearance through the kidneys and bladder. Binding in the PD-L1(+) spleen was reduced by coadministration of BMS-986192. Dosimetry estimates indicate that the kidney is the dose-limiting organ, with an estimated human absorbed dose of 2.20E–01 mSv/MBq. Conclusion: 18F-BMS-986192 demonstrated the feasibility of noninvasively imaging the PD-L1 status of tumors by small-animal PET studies. Clinical studies with 18F-BMS-986192 are under way to measure PD-L1 expression in human tumors.


Cancer Research | 2010

Abstract 2586: Adnectins as a platform for multi-specific targeted biologics: A novel bispecific inhibitor of EGFR and IGF-IR growth factor receptors

Stuart Emanuel; Linda Engle; Carolyn Cao; Ginger Chao; Zheng Lin; Rong-Rong Zhu; Aaron P. Yamniuk; Jennifer Hosbach; Jennifer S. Brown; Elizabeth Fitzpatrick; Jochem Gokemeijer; Paul E. Morin; Brent Morse; Irvith M. Carvajal; David Fabrizio; Martin C. Wright; Ruchira Dasgupta; Mike Gosselin; Rolf Ryseck; Michael L. Doyle; Tai W. Wong; Ray Camphausen; Sharon T. Cload; Nick Marsh; Eric Furfine; Marco M. Gottardis

Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC The epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor-1 (IGFR) are transmembrane receptor tyrosine kinases that mediate proliferative and invasive cell signaling in cancer. Inhibition of either receptor reduces tumor growth in both mouse models and in human clinical studies. Blocking the EGFR pathway can induce compensatory activation of the IGFR pathway to drive tumor growth and IGFR inhibition can result in activation of EGFR signaling in preclinical models. Therefore, blocking both receptors simultaneously may achieve superior efficacy to blocking either pathway alone. We developed individual optimized Adnectins™ specific for blocking either EGFR or IGFR signaling and engineered them into a single protein that linked both Adnectins together to construct a bi-specific Adnectin targeting the EGFR and IGFR (EI-tandem). The bifunctional molecule blocked activation of EGFR and IGFR, inhibited both EGF and IGF-induced down-stream cell signaling (MAPK and AKT pathways) and was antiproliferative in human cancer cell lines. Potency of the EI-tandem was comparable to anti-EGFR and anti-IGFR antibodies. The EI-tandem demonstrated a synergistic inhibition of IGFR phosphorylation and down-stream cell signaling compared to Adnectins specific for only EGFR or IGFR alone. Although Adnectins bound to the EGFR at a site distinct from the clinically approved anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, they still blocked binding of EGF to the EGFR. PEGylated EI-tandem inhibited the growth of human tumor xenografts driven by both EGFR and IGFR signaling, degraded EGFR and IGFR, and reduced phosphorylation of EGFR in tumors. Treatment of mice with EI-tandem caused increases in levels of the circulating ligands TGFα and IGF1 resulting from blockade of their respective receptors and provided convenient soluble biomarkers of target suppression. These results show that a bifunctional Adnectin can confer improved biological activity compared to monospecific biologics in tumors where growth is driven by multiple growth factors. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 2586.


Protein Engineering Design & Selection | 2018

Adnectin–drug conjugates for Glypican-3-specific delivery of a cytotoxic payload to tumors

Dasa Lipovsek; Irvith M. Carvajal; Alban Allentoff; Anthony Barros; John Brailsford; Qiang Cong; Pete Z. Cotter; Sanjeev Gangwar; Cris Hollander; Virginie Lafont; Wai Leung Lau; Wenying Li; Miguel Moreta; Steven R. O’Neil; Jason Pinckney; Michael J. Smith; Julie Su; Christina Terragni; Michael Wallace; Lifei Wang; Martin C. Wright; H. Nicholas Marsh; James W. Bryson

Abstract Tumor-specific delivery of cytotoxic agents remains a challenge in cancer therapy. Antibody–drug conjugates (ADC) deliver their payloads to tumor cells that overexpress specific tumor-associated antigens—but the multi-day half-life of ADC leads to high exposure even of normal, antigen-free, tissues and thus contributes to dose-limiting toxicity. Here, we present Adnectin–drug conjugates, an alternative platform for tumor-specific delivery of cytotoxic payloads. Due to their small size (10 kDa), renal filtration eliminates Adnectins from the bloodstream within minutes to hours, ensuring low exposure to normal tissues. We used an engineered cysteine to conjugate an Adnectin that binds Glypican-3, a membrane protein overexpressed in hepatocellular carcinoma, to a cytotoxic derivative of tubulysin, with the drug-to-Adnectin ratio of 1. We demonstrate specific, nanomolar binding of this Adnectin–drug conjugate to human and murine Glypican-3; its high thermostability; its localization to target-expressing tumor cells in vitro and in vivo, its fast clearance from normal tissues and its efficacy against Glypican-3-positive mouse xenograft models.


Archive | 1999

Methods for generating highly diverse libraries

Richard W. Wagner; Martin C. Wright; Brent Kreider


Journal of Biological Chemistry | 2001

In vitro selection and characterization of Bcl-XL binding proteins from a mix of tissue-specific mRNA display libraries

Philip W. Hammond; Julia Alpin; Cecil Rise; Martin C. Wright; Brent Kreider


Archive | 2004

Inhibitors of type 2 vascular endothelial growth factor receptors

Yan Chen; Elena Getmanova; Martin C. Wright; Alan S. Harris; Ai Ching Lim; Jochem Gokemeijer; Lin Sun; Michael Wittekind

Collaboration


Dive into the Martin C. Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Sun

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge