Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Carr is active.

Publication


Featured researches published by Martin Carr.


Journal of Clinical Investigation | 1972

The Human Rosette-Forming Cell as a Marker of a Population of Thymus-Derived Cells

Joseph Wybran; Martin Carr; H. Hugh Fudenberg

Sheep red blood cells can surround, in vitro, some human peripheral blood lymphocytes in a formation called a rosette. The number of rosetteforming cells (RFC) in 50 normal persons had a wide range (4-40%). The organs of 13 human fetuses (11-19 wk conceptional age) were examined for the presence of RFC. The thymus possessed the highest percentage of RFC, the maximum being 65% of total thymocytes in two 15-16 wk fetal specimens. Blood RFC were always present and their number slightly increased in the oldest fetuses. The bone-marrow showed 0-8% in the six fetuses studied. RFC were found in the spleen around the 13th wk and in the liver around the 17th wk of gestation. These observations lead to the hypothesis that human blood RFC may be chiefly thymic derived. Studies of patients with immunological disorders support this hypothesis: one patient with Nezelof syndrome had no blood RFC and four patients with Wiskott-Aldrich syndrome had a low number of blood RFC (1 and 1.5%). Patients with acquired hypogammaglobulinemia showed a normal percentage of RFC. With the fetal thymocytes, the percentage of inhibition with anti-mu serum increased with the fetal age to become complete in the oldest fetuses studied. Incubation of the oldest fetal thymocytes or the blood lymphocytes with anti-gamma serum of anti-mu serum completely inhibited the rosette formation. These results suggest that mu-chain determinants are present on human fetal thymocytes and blood RFC. The significance of the presence of gamma-chain determinants on these cells is unclear.


Nature Communications | 2013

The Capsaspora genome reveals a complex unicellular prehistory of animals

Hiroshi Suga; Zehua Chen; Alex de Mendoza; Arnau Sebé-Pedrós; Matthew W. Brown; Eric Kramer; Martin Carr; Pierre Kerner; Michel Vervoort; Núria Sánchez-Pons; Guifré Torruella; Romain Derelle; Gerard Manning; B. Franz Lang; Carsten Russ; Brian J. Haas; Andrew J. Roger; Chad Nusbaum; Iñaki Ruiz-Trillo

To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans’ unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic and archaeological perspectives on the initial modern human colonization of southern Asia

Paul Mellars; Kevin Gori; Martin Carr; Pedro Soares; Martin B. Richards

It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)—possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60–50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular phylogeny of choanoflagellates, the sister group to Metazoa

Martin Carr; Barry S.C. Leadbeater; R. Hassan; Michaela Nelson; Sandra L. Baldauf

Choanoflagellates are single-celled aquatic flagellates with a unique morphology consisting of a cell with a single flagellum surrounded by a “collar” of microvilli. They have long interested evolutionary biologists because of their striking resemblance to the collared cells (choanocytes) of sponges. Molecular phylogeny has confirmed a close relationship between choanoflagellates and Metazoa, and the first choanoflagellate genome sequence has recently been published. However, molecular phylogenetic studies within choanoflagellates are still extremely limited. Thus, little is known about choanoflagellate evolution or the exact nature of the relationship between choanoflagellates and Metazoa. We have sequenced four genes from a broad sampling of the morphological diversity of choanoflagellates including most species currently available in culture. Phylogenetic analyses of these sequences, alone and in combination, reject much of the traditional taxonomy of the group. The molecular data also strongly support choanoflagellate monophyly rejecting proposals that Metazoa were derived from a true choanoflagellate ancestor. Mapping of a complementary matrix of morphological and ecological traits onto the phylogeny allows a reinterpretation of choanoflagellate character evolution and predicts the nature of their last common ancestor.


Nature Communications | 2013

A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages

Marta D. Costa; Joana B. Pereira; Maria Pala; Verónica Fernandes; Anna Olivieri; Alessandro Achilli; Ugo A. Perego; Sergei Rychkov; Oksana Yu. Naumova; Jiři Hatina; Scott R. Woodward; Ken Khong Eng; Vincent Macaulay; Martin Carr; Pedro Soares; Luísa Pereira; Martin B. Richards

The origins of Ashkenazi Jews remain highly controversial. Like Judaism, mitochondrial DNA is passed along the maternal line. Its variation in the Ashkenazim is highly distinctive, with four major and numerous minor founders. However, due to their rarity in the general population, these founders have been difficult to trace to a source. Here we show that all four major founders, ~40% of Ashkenazi mtDNA variation, have ancestry in prehistoric Europe, rather than the Near East or Caucasus. Furthermore, most of the remaining minor founders share a similar deep European ancestry. Thus the great majority of Ashkenazi maternal lineages were not brought from the Levant, as commonly supposed, nor recruited in the Caucasus, as sometimes suggested, but assimilated within Europe. These results point to a significant role for the conversion of women in the formation of Ashkenazi communities, and provide the foundation for a detailed reconstruction of Ashkenazi genealogical history.


Journal of Eukaryotic Microbiology | 2011

Higher Level Taxonomy and Molecular Phylogenetics of the Choanoflagellatea

Frank Nitsche; Martin Carr; Hartmut Arndt; Barry S.C. Leadbeater

ABSTRACT. The choanoflagellates (Choanoflagellatea) comprise a major group of nanoflagellates, which are ubiquitous in the aquatic environment. Recent molecular phylogenies have shown them to be the sister group to the Metazoa. However, the phylogeny of the choanoflagellates is still far from understood. We present here a 29 taxon, multigene phylogeny that robustly places the root of the choanoflagellates. One of the original nonloricate families, Codonosigidae is shown to be a polyphyletic assemblage nested within the Salpingoecidae. We elaborate on a revised taxonomy that divides Choanoflagellatea into two orders: Craspedida and Acanthoecida. Craspedida is composed of species that possess an organic cell coating and contains the single family Salpingoecidae. Members of the predominantly marine Acanthoecida produce a siliceous lorica in addition to an organic coat and are contained in two families—the Acanthoecidae and Stephanoecidae fam. n. Previous studies of choanoflagellates have been hindered by cases of taxon misidentification as well as the limited resolution of 18S small subunit (SSU) rDNA phylogenies. Unfortunately, cases of misidentification have been heavily repeated in the literature. In an attempt to avoid further confusion, we highlight known instances of misnamed taxa. We also examine the suitability of SSU rDNA sequences alone for choanoflagellate phylogenetics and recommend the use of protein‐coding genes, such as hsp90 and tubA, whenever possible.


PLOS ONE | 2012

Evolutionary genomics of transposable elements in Saccharomyces cerevisiae

Martin Carr; Douda Bensasson; Casey M. Bergman

Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing transposable elements and the recent availability of genome sequences for multiple strains and species of yeast motivates new investigations into Ty evolution in S. cerevisiae. Here we provide a comprehensive phylogenetic and population genetic analysis of all Ty families in S. cerevisiae based on a systematic re-annotation of Ty elements in the S288c reference genome. We show that previous annotation efforts have underestimated the total copy number of Ty elements for all known families. In addition, we identify a new family of Ty3-like elements related to the S. paradoxus Ty3p which is composed entirely of degenerate solo LTRs. Phylogenetic analyses of LTR sequences identified three families with short-branch, recently active clades nested among long branch, inactive insertions (Ty1, Ty3, Ty4), one family with essentially all recently active elements (Ty2) and two families with only inactive elements (Ty3p and Ty5). Population genomic data from 38 additional strains of S. cerevisiae show that the majority of Ty insertions in the S288c reference genome are fixed in the species, with insertions in active clades being predominantly polymorphic and insertions in inactive clades being predominantly fixed. Finally, we use comparative genomic data to provide evidence that the Ty2 and Ty3p families have arisen in the S. cerevisiae genome by horizontal transfer. Our results demonstrate that the genome of a single individual contains important information about the state of TE population dynamics within a species and suggest that horizontal transfer may play an important role in shaping the genomic diversity of transposable elements in unicellular eukaryotes.


Journal of Eukaryotic Microbiology | 2010

Conserved Meiotic Genes Point to Sex in the Choanoflagellates

Martin Carr; Barry S.C. Leadbeater; Sandra L. Baldauf

ABSTRACT. The choanoflagellates are a widespread group of heterotrophic aquatic nanoflagellates, which have recently been confirmed as the sister‐group to Metazoa. Asexual reproduction is the only mode of cell division that has been observed within the group; at present the range of reproductive modes, as well as the ploidy level, within choanoflagellates are unknown. The recent discovery of long terminal repeat retrotransposons within the genome of Monosiga brevicollis suggests that this species also has sexual stages in its life cycle because asexual organisms cannot tolerate retrotransposons due to the rapid accumulation of deleterious mutations caused by their transposition. We screened the M. brevicollis genome for known eukaryotic meiotic genes, using a recently established “meiosis detection toolkit” of 19 genes. Eighteen of these genes were identified, none of which appears to be a pseudogene. Four of the genes were also identified in expressed sequence tag data from the distantly related Monosiga ovata. The presence of these meiosis‐specific genes provides evidence for meiosis, and by implication sex, within this important group of protists.


Chromosoma | 2002

Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster

Martin Carr; Judith R. Soloway; Thelma E. Robinson; John F. Y. Brookfield

Abstract. There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.


Journal of Eukaryotic Microbiology | 2017

Beyond the “Code”: A Guide to the Description and Documentation of Biodiversity in Ciliated Protists (Alveolata, Ciliophora)

Alan Warren; David J. Patterson; Micah Dunthorn; John C. Clamp; Undine E.M. Achilles-Day; Erna Aescht; Saleh A. Al-Farraj; Saleh Al-Quraishy; Khaled A. S. Al-Rasheid; Martin Carr; John G. Day; Marc Dellinger; Hamed A. El-Serehy; Yangbo Fan; Feng Gao; Shan Gao; Jun Gong; Renu Gupta; Xiaozhong Hu; Komal Kamra; Gaytha A. Langlois; Xiaofeng Lin; Diana Lipscomb; Christopher S. Lobban; Pierangelo Luporini; Denis H. Lynn; Honggang Ma; Miroslav Macek; Jacqueline Mackenzie-Dodds; Seema Makhija

Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN‐BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN‐BC proposes to populate The Ciliate Guide, an online database, with biodiversity‐related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data.

Collaboration


Dive into the Martin Carr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Abedin

University of California

View shared research outputs
Top Co-Authors

Avatar

Nicole King

University of California

View shared research outputs
Top Co-Authors

Avatar

Susan L. Young

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Hugh Fudenberg

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Cotton

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge