Martin Chuaqui
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Chuaqui.
Computational Methods and Function Theory | 2004
Martin Chuaqui; Peter Duren; Brad Osgood
A geometric interpretation of the Schwarzian of a harmonic mapping is given in terms of geodesic curvature on the associated minimal surface, generalizing a classical formula for analytic functions. A formula for curvature of image arcs under harmonic mappings is applied to derive a known result on concavity of the boundary. It is also used to characterize fully convex mappings, which are related to fully starlike mappings through a harmonic analogue of Alexander’s theorem.
Journal of Geometric Analysis | 2007
Martin Chuaqui; Peter Duren; Brad Osgood
A general criterion in terms of the Schwarzian derivative is given for global univalence of the Weierstrass-Enneper lift of a planar harmonic mapping. Results on distortion and boundary regularity are also deduced. Examples are given to show that the criterion is sharp. The analysis depends on a generalized Schwarzian defined for conformai metrics and on a Schwarzian introduced by Ahlfors for curves. Convexity plays a central role.
arXiv: Complex Variables | 2007
Martin Chuaqui; Peter Duren; Brad Osgood
For analytic functions in the unit disk, general bounds on the Schwarzian derivative in terms of Nehari functions are shown to imply uniform local univalence and in some cases finite and bounded valence. Similar results are obtained for the Weierstrass–Enneper lifts of planar harmonic mappings to their associated minimal surfaces. Finally, certain classes of harmonic mappings are shown to have finite Schwarzian norm.
Bulletin of The Australian Mathematical Society | 2009
Martin Chuaqui; Peter Duren; Brad Osgood; Dennis Stowe
In this note we study the zeros of solutions of differential equations of the formu !! +pu=0. A criterion for oscillation is found, and some sharper forms of the Sturm comparison theorem are given.
Israel Journal of Mathematics | 1995
Martin Chuaqui; Brad Osgood
Gehring and Pommerenke have shown that if the Schwarzian derivativeSf of an analytic functionf in the unit diskD satisfies |Sf(z)|≤, 2(1 - |z|2)–2 thenf(D) is a Jordan domain except whenf(D) is the image under a Möbius transformation of an infinite parallel strip. The condition |Sf(z)|≤ 2(1 - |z|2)–2 is the classical sufficient condition for univalence of Nehari. In this paper we show that the same type of phenomenon established by Gehring and Pommerenke holds for a wider class of univalence criteria of the form|Sf(z)|≤p(|z|) also introduced by Nehari. These include|Sf((z)|≤π2/2 and|Sf((z)|≤4(1-|z|2)–1. We also obtain results on Hölder continuity and quasiconformal extensions.
Computational Methods and Function Theory | 2008
Martin Chuaqui; Peter Duren; Brad Osgood
Quantitative estimates are obtained for the (finite) valence of functions analytic in the unit disk with Schwarzian derivative that is bounded or of slow growth. A harmonic mapping is shown to be uniformly locally univalent with respect to the hyperbolic metric if and only if it has finite Schwarzian norm, thus generalizing a result of B. Schwarz for analytic functions. A numerical bound is obtained for the Schwarzian norms of univalent harmonic mappings.
Proceedings of the American Mathematical Society | 2005
Martin Chuaqui; Peter Duren; Brad Osgood
It is shown that an analytic function taking circles to ellipses must be a Mobius transformation. It then follows that a harmonic mapping taking circles to ellipses is a harmonic Mobius transformation.
Siam Journal on Mathematical Analysis | 2000
Martin Chuaqui; Julian Gevirtz
We study mappings between Riemannian 2-manifolds which have constant principal stretching factors (cps-mappings). Such mappings f can be described in terms of the relationship between the geodesic curvature of the curves of principal strain at p and that of their images at f(p). In the context of local coordinates this relationship takes the form of a nonlinear hyperbolic system, the blow-up properties of which depend on the Gaussian curvatures of the two manifolds. We use the theory of such systems to study global existence when both manifolds are the hyperbolic plane
Proceedings of the American Mathematical Society | 2012
Martin Chuaqui; Peter Duren; Brad Osgood
\Bbb{H}^2
Proceedings of the American Mathematical Society | 1997
Martin Chuaqui; Brad Osgood; Dennis Stowe
and obtain a simple description of all cps-mappings of