Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Crespi is active.

Publication


Featured researches published by Martin Crespi.


Plant and Soil | 2009

Plant root growth, architecture and function.

Angela Hodge; Graziella Berta; Claude Doussan; Francisco Merchan; Martin Crespi

Without roots there would be no rhizosphere and no rhizodeposition to fuel microbial activity. Although micro-organisms may view roots merely as a source of carbon supply this belies the fascinating complexity and diversity of root systems that occurs despite their common function. Here, we examine the physiological and genetic determinants of root growth and the complex, yet varied and flexible, root architecture that results. The main functions of root systems are also explored including how roots cope with nutrient acquisition from the heterogeneous soil environment and their ability to form mutualistic associations with key soil micro-organisms (such as nitrogen fixing bacteria and mycorrhizal fungi) to aid them in their quest for nutrients. Finally, some key biotic and abiotic constraints on root development and function in the soil environment are examined and some of the adaptations roots have evolved to counter such stresses discussed.


The Plant Cell | 2010

miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth

Elena Marin; Virginie Jouannet; Aurélie Herz; Annemarie S. Lokerse; Dolf Weijers; Hervé Vaucheret; Laurent Nussaume; Martin Crespi; Alexis Maizel

This work shows how a specific class of small RNAs respond to auxin and quantitatively regulate root branching, an important adaptive trait in plants. These small RNAs and their target transcription factors form a self-regulatory gene network through multiple feedback loops. This ensures a quantitative control of lateral root development and modulation of auxin effects. Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development.


The EMBO Journal | 1994

enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth

Martin Crespi; E. Jurkevitch; M. Poiret; Yves d'Aubenton-Carafa; György Petrovics; Eva Kondorosi; Adam Kondorosi

Rhizobium meliloti can interact symbiotically with Medicago plants, thereby inducing root nodules. However, certain Medicago plants can form nodules spontaneously, in the absence of rhizobia. A differential screening was performed using spontaneous nodule versus root cDNAs from Medicago sativa ssp. varia. Transcripts of a differentially expressed clone, Msenod40, were detected in all differentiating cells of nodule primordia and spontaneous nodules, but were absent in fully differentiated cells. Msenod40 showed homology to a soybean early nodulin gene, Gmenod40, although no significant open reading frame (ORF) or coding capacity was found in the Medicago sequence. Furthermore, in the sequences of cDNAs and a genomic clone (Mtenod40) isolated from Medicago truncatula, a species containing a unique copy of this gene, no ORFs were found either. In vitro translation of purified Mtenod40 transcripts did not reveal any protein product. Evaluation of the RNA secondary structure indicated that both msenod40 and Gmenod40 transcripts showed a high degree of stability, a property shared with known non‐coding RNAs. The Mtenod40 RNA was localized in the cytoplasm of cells in the nodule primordium. Infection with Agrobacterium tumefaciens strains bearing antisense constructs of Mtenod40 arrested callus growth of Medicago explants, while overexpressing Mtenod40 embryos developed into teratomas. These data suggest that the enod40 genes might have a role in plant development, acting as ‘riboregulators’, a novel class of untranslated RNAs associated with growth control and differentiation.


Genome Research | 2008

Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

Besma Ben Amor; Sonia Wirth; Francisco Merchan; Philippe Laporte; Yves d’Aubenton-Carafa; Judith Hirsch; Alexis Maizel; Allison C. Mallory; Antoine Lucas; Jean Marc Deragon; Hervé Vaucheret; Claude Thermes; Martin Crespi

Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.


The Plant Cell | 2009

Genome-Wide Medicago truncatula Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules

Christine Lelandais-Brière; Loreto Naya; Erika Sallet; Fanny Calenge; Florian Frugier; Caroline Hartmann; Jérôme Gouzy; Martin Crespi

Posttranscriptional regulation of a variety of mRNAs by small 21- to 24-nucleotide RNAs, notably the microRNAs (miRNAs), is emerging as a novel developmental mechanism. In legumes like the model Medicago truncatula, roots are able to develop a de novo meristem through the symbiotic interaction with nitrogen-fixing rhizobia. We used deep sequencing of small RNAs from root apexes and nodules of M. truncatula to identify 100 novel candidate miRNAs encoded by 265 hairpin precursors. New atypical precursor classes producing only specific 21- and 24-nucleotide small RNAs were found. Statistical analysis on sequencing reads abundance revealed specific miRNA isoforms in a same family showing contrasting expression patterns between nodules and root apexes. The differentially expressed conserved and nonconserved miRNAs may target a large variety of mRNAs. In root nodules, which show diverse cell types ranging from a persistent meristem to a fully differentiated central region, we discovered miRNAs spatially enriched in nodule meristematic tissues, vascular bundles, and bacterial infection zones using in situ hybridization. Spatial regulation of miRNAs may determine specialization of regulatory RNA networks in plant differentiation processes, such as root nodule formation.


Plant Journal | 2008

MicroRNA166 controls root and nodule development in Medicago truncatula

Adnane Boualem; Philippe Laporte; Mariana Jovanovic; Carole Laffont; Julie Plet; Jean-Philippe Combier; Andreas Niebel; Martin Crespi; Florian Frugier

Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.


The EMBO Journal | 1992

Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene.

Martin Crespi; Eric Messens; Allan Caplan; M. Van Montagu; Jan Desomer

Rhodococcus fascians is a nocardiform bacteria that induces leafy galls (fasciation) on dicotyledonous and several monocotyledonous plants. The wild‐type strain D188 contained a conjugative, 200 kb linear extrachromosomal element, pFiD188. Linear plasmid‐cured strains were avirulent and reintroduction of this linear element restored virulence. Pulsed field electrophoresis indicated that the chromosome might also be a linear molecule of 4 megabases. Three loci involved in phytopathogenicity have been identified by insertion mutagenesis of this Fi plasmid. Inactivation of the fas locus resulted in avirulent strains, whereas insertions in the two other loci affected the degree of virulence, yielding attenuated (att) and hypervirulent (hyp) bacteria. One of the genes within the fas locus encoded an isopentenyltranferase (IPT) with low homology to analogous proteins from Gram‐negative phytopathogenic bacteria. IPT activity was detected after expression of this protein in Escherichia coli cells. In R.fascians, ipt expression could only be detected in bacteria induced with extracts from fasciated tissue. R.fascians strains without the linear plasmid but containing this fas locus alone could not provoke any phenotype on plants, indicating additional genes from the linear plasmid were also essential for virulence. These studies, the first genetic analysis of the interaction of a Gram‐positive bacterium with plants, suggest that a novel mechanism for plant tumour induction has evolved in R.fascians independently from the other branches of the eubacteria.


Plant Journal | 2011

MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula

Julie Plet; Anton P. Wasson; Federico Ariel; Christine Le Signor; David Baker; Ulrike Mathesius; Martin Crespi; Florian Frugier

Phytohormonal interactions are essential to regulate plant organogenesis. In response to the presence of signals from symbiotic bacteria, the Nod factors, legume roots generate a new organ: the nitrogen-fixing nodule. Analysis of mutants in the Medicago truncatula CRE1 cytokinin receptor and of the MtRR4 cytokinin primary response gene expression pattern revealed that cytokinin acts in initial cortical cell divisions and later in the transition between meristematic and differentiation zones of the mature nodule. MtCRE1 signaling is required for activation of the downstream nodulation-related transcription factors MtERN1, MtNSP2 and MtNIN, as well as to regulate expression and accumulation of PIN auxin efflux carriers. Whereas the MtCRE1 pathway is required to allow the inhibition of polar auxin transport in response to rhizobia, nodulation is still negatively regulated by the MtEIN2/SICKLE-dependent ethylene pathway in cre1 mutants. Hence, MtCRE1 signaling acts as a regulatory knob, integrating positive plant and bacterial cues to control legume nodule organogenesis.


Trends in Plant Science | 2008

Cytokinin: secret agent of symbiosis

Florian Frugier; Sonja Kosuta; Jeremy D. Murray; Martin Crespi; Krzysztof Szczyglowski

The symbiotic interaction between Rhizobium bacteria and legumes leads to the induction of a new root organ: the nitrogen-fixing nodule. Recent findings have uncovered that cytokinin is instrumental in this developmental process, but they also suggest a broader role for cytokinin in mediating rhizobial infection. In this opinion article, we propose that cytokinin is the key differentiation signal for nodule organogenesis. Furthermore, we discuss a model in which cytokinin might also influence bacterial infection by controlling the expression of NIN (Nodule Inception) and other transcriptional regulators through mechanisms operating both locally and systemically.


The Plant Cell | 2004

Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula.

Anna Campalans; Adam Kondorosi; Martin Crespi

In eukaryotes, diverse mRNAs containing only short open reading frames (sORF-mRNAs) are induced at specific stages of development. Their mechanisms of action may involve the RNA itself and/or sORF-encoded oligopeptides. Enod40 genes code for highly structured plant sORF-mRNAs involved in root nodule organogenesis. A novel RNA binding protein interacting with the enod40 RNA, MtRBP1 (for Medicago truncatula RNA Binding Protein 1), was identified using a yeast three-hybrid screening. Immunolocalization studies and use of a MtRBP1-DsRed2 fluorescent protein fusion showed that MtRBP1 localized to nuclear speckles in plant cells but was exported into the cytoplasm during nodule development in enod40-expressing cells. Direct involvement of the enod40 RNA in MtRBP1 relocalization into cytoplasmic granules was shown using a transient expression assay. Using a (green fluorescent protein)/MS2 bacteriophage system to tag the enod40 RNA, we detected in vivo colocalization of the enod40 RNA and MtRBP1 in these granules. This in vivo approach to monitor RNA–protein interactions allowed us to demonstrate that cytoplasmic relocalization of nuclear proteins is an RNA-mediated cellular function of a sORF-mRNA.

Collaboration


Dive into the Martin Crespi's collaboration.

Top Co-Authors

Avatar

Florian Frugier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Adam Kondorosi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christine Lelandais-Brière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Federico Ariel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Caroline Hartmann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Céline Charon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Merchan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Moussa Benhamed

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Carole Laffont

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge