Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Divoky is active.

Publication


Featured researches published by Martin Divoky.


Journal of The Optical Society of America B-optical Physics | 2012

Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb 3+ :YAG laser amplifier for the HiLASE Project

Magdalena Sawicka; Martin Divoky; Jakub Novák; Antonio Lucianetti; Bedrich Rus; Tomas Mocek

A three-dimensional ray-tracing code for determination of amplified spontaneous emission in a multislab laser amplifier is presented. In addition to energy stored in the amplifier, the code also calculates the heat distribution and the amplification of the signal beam. For cryogenically cooled multislab amplifiers with Yb3+:YAG and absorptive Cr4+:YAG cladding, energy storage efficiency greater than 52% and small signal gain of 22  m−1 were obtained. The pump energy converted to heat was found to be 11% in the active volume and 50% in the Cr4+:YAG cladding.


Optics Letters | 2016

100 J-level nanosecond pulsed diode pumped solid state laser

Saumyabrata Banerjee; Paul D. Mason; Klaus Ertel; P. Jonathan Phillips; Mariastefania De Vido; Oleg Chekhlov; Martin Divoky; Jan Pilar; Jodie Smith; Thomas J. Butcher; Andrew Lintern; Steph Tomlinson; Waseem Shaikh; C. J. Hooker; Antonio Lucianetti; Cristina Hernandez-Gomez; Tomas Mocek; C.B. Edwards; John Collier

We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.


Optical Engineering | 2013

Design of high-energy-class cryogenically cooled Yb3+∶YAG multislab laser system with low wavefront distortion

Martin Divoky; Pawel Sikocinski; Jan Pilar; Antonio Lucianetti; Magdalena Sawicka; Ondrej Slezak; Tomas Mocek

Abstract. Detailed modeling results of 100 J class laser systems with respect to the output energy, beam propagation, nonlinear phase accumulation, wavefront aberrations, and adaptive optics performance obtained in MIRÓ and MATLAB codes are presented here. The laser system is based on a cryogenically cooled Yb3+∶YAG multislab amplifier with two identical amplifier heads and operates at 10 Hz repetition rate with an average power above 1 kW.


IEEE Journal of Quantum Electronics | 2013

Optimization of Wavefront Distortions and Thermal-Stress Induced Birefringence in a Cryogenically-Cooled Multislab Laser Amplifier

Ondrej Slezak; Antonio Lucianetti; Martin Divoky; Magdalena Sawicka; Tomas Mocek

The optimization of the Yb:YAG gain medium and absorbing clad parameters was investigated for efficient heat removal in cryogenically-cooled multislab amplifiers operating in the kilowatt average power range (100 J/10 Hz). The 3-D distributions of temperature, stress, strain, and birefringence were calculated by a finite element analysis. Based on these data, the space-resolved optical path difference and depolarization losses were determined considering eight slabs, two laser heads, and four passes. We have found that a combination of properly designed (doping/width) index matching material and helium cryogenic cooling leads to a quasi-constant transverse temperature distribution in the pump area and a very small axial thermal gradient in the slab. It is shown that the resulting thermally induced phase aberrations, stresses, and average depolarization are rendered insignificant.


Optical Materials Express | 2014

Generation of 500-mJ nanosecond pulses from a diode-pumped Yb:YAG TRAM laser amplifier

Shigeki Tokita; Martin Divoky; Hiroaki Furuse; Kakeru Matsumoto; Yuki Nakamura; Minoru Yoshida; Toshiyuki Kawashima; Junji Kawanaka

Amplification of 10-ns laser pulses to an energy of 500 mJ at a 10-Hz repetition rate in a cryogenic multi-pass multi-total-reflection-active-mirror (multi-TRAM) amplifier was achieved. By using a multi-TRAM, which is a YAG ceramic composite with three Yb:YAG active layers, a maximum single-pass gain of 12 and a total storage energy of 1.5 J were obtained.


Proceedings of SPIE | 2013

Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers

Venkatesan Jambunathan; Joerg Koerner; Pawel Sikocinski; Martin Divoky; Magdalena Sawicka; Antonio Lucianetti; Joachim Hein; Tomas Mocek

Precise values of absorption, emission and gain cross-sections of Yb:YAG, Yb:LuAG, Yb:CaF2 and Yb:FP15-glass at cryogenic temperatures are presented. To obtain the emission cross-sections two theoretical approaches were used. The first is the McCumber or reciprocity method (RM) which is based on the absorption spectra. The second is the Fuchtbauer-Ladenburg (FL) method using fluorescence spectra. From the results of cross-sections one can expect significant impact on laser performance on these materials especially in the case of high energy class diode pumped solid state lasers.


Applied Optics | 2014

Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE)

Jan Pilar; Ondrej Slezak; Pawel Sikocinski; Martin Divoky; Magdalena Sawicka; Stefano Bonora; Antonio Lucianetti; Tomas Mocek; Helena Jelinkova

We report numerical and experimental results obtained with an optical setup that simulates the heating and cooling processes expected in a multi-slab high-average-power laser head. We have tested the performance of an adaptive optics system consisting of a photo-controlled deformable mirror (PCDM) and a Shack-Hartmann wavefront sensor for the effective correction of the generated wavefront aberrations. The performance of the adaptive optics system is characterized for different layouts of the actuator array and for different configurations of the heating mechanisms. The numerical results are benchmarked using a PCDM, which allowed us to experimentally compare the performances of different deformable mirrors.


Proceedings of SPIE | 2015

DiPOLE100: A 100 J, 10 Hz DPSSL using cryogenic gas cooled Yb:YAG multi slab amplifier technology

Paul D. Mason; Saumyabrata Banerjee; Klaus Ertel; P. J. Phillips; Thomas J. Butcher; Jodie Smith; Mariastefania De Vido; Stephanie Tomlinson; Oleg Chekhlov; Waseem Shaikh; Steve Blake; Paul Holligan; Martin Divoky; Jan Pilar; Cristina Hernandez-Gomez; R. Justin S. Greenhalgh; J. L. Collier

In this paper we provide an overview of the design of DiPOLE100, a cryogenic gas-cooled DPSSL system based on Yb:YAG multi-slab amplifier technology, designed to efficiently produce 100 J pulses, between 2 and 10 ns in duration, at up to 10 Hz repetition rate. The current system is being built at the CLF for the HiLASE project and details of the front end, intermediate 10J cryo-amplifier and main 100J cryo-amplifier are presented. To date, temporal and spatial pulse shaping from the front end has been demonstrated, with 10 ns pulses of arbitrary shape (flat-top, linear ramps, and exponentials) produced with energies up to 150 mJ at 10 Hz. The pump diodes and cryogenic gas cooling system for the 10J cryo-amplifier have been fully commissioned and laser amplification testing has begun. The 100J, 940 nm pump sources have met full specification delivering pulses with 250 kW peak power and duration up to 1.2 ms at 10 Hz, corresponding to 3 kW average power each. An intensity modulation across the 78 mm square flat-top profile of < 5 % rms was measured. The 100J gain media slabs have been supplied and their optical characteristics tested. Commissioning of the 100J amplifier will commence shortly.


Proceedings of SPIE | 2013

HiLASE cryogenically-cooled diode-pumped laser prototype for inertial fusion energy

Antonio Lucianetti; Martin Divoky; Magdalena Sawicka; Pawel Sikocinski; Venkatesan Jambunathan; Jan Pilar; Ondrej Slezak; Viliam Kmetik; Jakub Novák; Martin Fibrich; Bedrich Rus; Joerg Koerner; Joachim Hein; Tomas Mocek

We present the design parameters of a diode-pumped 100J-class multi-slab Yb:YAG laser at 10 Hz scalable to the kJ regime. Results of detailed energetics and thermo-optical modeling confirm the viability of cryogenic helium-gas cooling approach to drastically reduce thermally-induced distortions in the laser slabs. In addition, a comparison of spectral measurements from laser-diode stacks and Yb:YAG crystals validates the feasibility of highly efficient diode-pumped solid-state lasers at cryogenic temperatures.


Laser and Particle Beams | 2013

Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers

Magdalena Sawicka; Martin Divoky; Antonio Lucianetti; Tomas Mocek

We present a three-dimensional code for the optimization of energy storage, heat deposition, and amplification in square-shaped laser slabs and multi-slab laser amplifiers. The influence of the slab dimensions, slab face and edge reflectivities, pump parameters, and operating temperature on amplified spontaneous emission and stored energy has been investigated. The multi-slab and single-slab configurations are compared, analyzing in detail the influence of the absorption cladding for the suppression of amplified spontaneous emission radiation.

Collaboration


Dive into the Martin Divoky's collaboration.

Top Co-Authors

Avatar

Tomas Mocek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Pilar

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Klaus Ertel

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul D. Mason

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Saumyabrata Banerjee

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Magdalena Sawicka

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jodie Smith

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Butcher

Rutherford Appleton Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge