Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Drucker is active.

Publication


Featured researches published by Martin Drucker.


Journal of Biological Chemistry | 2003

Structural characterization of HC-pro, a plant virus multifunctional protein

Célia Plisson; Martin Drucker; Stéphane Blanc; Sylvie German-Retana; Olivier Le Gall; Daniel Thomas; Patrick Bron

The helper component proteinase (HC-Pro) is a key protein encoded by plant viruses of the genus Potyvirus. HC-Pro is involved in different steps of the viral cycle, aphid transmission, replication, and virus cell-to-cell and systemic movement and is a suppressor of post-transcriptional gene silencing. Structural knowledge of HC-Pro is required to better understand its multiple functions. To this aim, we purified His-tagged wild-type HC-Pro and a N-terminal deletion mutant (ΔHC-Pro) from plants infected with recombinant potyviruses. Biochemical analysis of the recombinant proteins confirmed that HC-Pro is a dimer in solution, that the N terminus is not essential for self-interaction, and that a large C-terminal domain is highly resistant to proteolysis. Two-dimensional crystals of the recombinant proteins were successfully grown on Ni2+-chelating lipid monolayers. Comparison of projection maps of negatively stained crystals revealed that HC-Pro is composed of two domains separated by a flexible constriction. Cryo-electron crystallography of ΔHC-Pro allowed us to calculate a projection map at 9-Å resolution. Our data from electron microscopy, biochemical analysis, and secondary structure predictions lead us to suggest a model for structure/function relationships in the HC-Pro protein.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A protein key to plant virus transmission at the tip of the insect vector stylet

Marilyne Uzest; Daniel Gargani; Martin Drucker; Eugénie Hébrard; Elisa Garzo; Thierry Candresse; Alberto Fereres; Stéphane Blanc

Hundreds of species of plant viruses, many of them economically important, are transmitted by noncirculative vector transmission (acquisition by attachment of virions to vector mouthparts and inoculation by subsequent release), but virus receptors within the vector remain elusive. Here we report evidence for the existence, precise location, and chemical nature of the first receptor for a noncirculative virus, cauliflower mosaic virus, in its insect vector. Electron microscopy revealed virus-like particles in a previously undescribed anatomical zone at the extreme tip of the aphid maxillary stylets. A novel in vitro interaction assay characterized binding of cauliflower mosaic virus protein P2 (which mediates virus–vector interaction) to dissected aphid stylets. A P2-GFP fusion exclusively labeled a tiny cuticular domain located in the bottom-bed of the common food/salivary duct. No binding to stylets of a non-vector species was observed, and a point mutation abolishing P2 transmission activity correlated with impaired stylet binding. The novel receptor appears to be a nonglycosylated protein deeply embedded in the chitin matrix. Insight into such insect receptor molecules will begin to open the major black box of this scientific field and might lead to new strategies to combat viral spread.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector

Martin Drucker; Rémy Froissart; Eugénie Hébrard; Marilyne Uzest; Marc Ravallec; Pascal Esperandieu; Jean-Claude Mani; Martine Pugnière; Françoise Roquet; Alberto Fereres; Stéphane Blanc

Interactions between Cauliflower mosaic virus (CaMV) and its aphid vector are regulated by the viral protein P2, which binds to the aphid stylets, and protein P3, which bridges P2 and virions. By using baculovirus expression of P2 and P3, electron microscopy, surface plasmon resonance, affinity chromatography, and transmission assays, we demonstrate that P3 must be previously bound to virions in order that attachment to P2 will allow aphid transmission of CaMV. We also show that a P2:P3 complex exists in the absence of virions but is nonfunctional in transmission. Hence, unlike P2, P3 and virions cannot be sequentially acquired by the vector. Immunogold labeling revealed the predominance of spatially separated P2:P3 and P3:virion complexes in infected plant cells. This specific distribution indicates that the transmissible complex, P2:P3:virion, does not form primarily in infected plants but in aphids. A model, describing the regulating role of P3 in the formation of the transmissible CaMV complex in planta and during acquisition by aphids, is presented, and its consequences are discussed.


Current Opinion in Microbiology | 2011

New research horizons in vector-transmission of plant viruses.

Stéphane Blanc; Marilyne Uzest; Martin Drucker

Understanding the mechanisms controlling vector-transmission of plant viruses requires integrating information from at least three different viewpoints: virus-vector interactions, plant-vector interactions and virus-plant interactions. While some of these aspects have been covered by past and present investigations, others have been bypassed completely, because of technical bottlenecks or conceptual lacunas. Here, we highlight recent advances and needs in hitherto poorly documented aspects of vector transmission, such as characterization of the vector molecules responsible for initial viral recognition, and the role of vector saliva in inoculation and initial onset of infection in a new plant. We also propose and discuss some novel conceptual and complementary questions that are opening up fascinating new horizons in this field. We explore the possible existence of viral morphs with specific properties that facilitate acquisition by vectors, and discuss the dynamics/genetics of such viral subpopulations, which could differentiate and specialize in different host compartments.


eLife | 2013

A virus responds instantly to the presence of the vector on the host and forms transmission morphs

Alexandre Martinière; Aurélie Bak; Jean Luc Macia; Nicole Lautredou; Daniel Gargani; Juliette Doumayrou; E. Garzo; Aránzazu Moreno; Alberto Fereres; Stéphane Blanc; Martin Drucker

Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001


Plant Journal | 2009

A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus.

Alexandre Martinière; Daniel Gargani; Marilyne Uzest; Nicole Lautredou; Stéphane Blanc; Martin Drucker

Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles

Anders Hafrén; Jean-Luc Macia; Andrew J. Love; Joel J. Milner; Martin Drucker; Daniel Hofius

Significance Autophagy contributes to innate immune responses in metazoans by targeted elimination of intracellular pathogens, including viruses, in a process termed “xenophagy.” Whether autophagy has a similar role in plant immunity is unknown. Here we demonstrate that the selective autophagy receptor NEIGHBOR OF BRCA1 (NBR1) binds the viral capsid protein and particles of cauliflower mosaic virus (CaMV) and mediates their autophagic degradation. We further demonstrate that this antiviral xenophagy is counteracted by protective functions of autophagy-resistant CaMV inclusion bodies. Finally, we show that a second, nonselective NBR1-independent autophagy pathway promotes plant viability during infection and serves as a proviral mechanism to extend the timespan for virus production and potential CaMV transmission. Thus autophagy exhibits important pro- and antiviral roles in compatible plant–virus interactions. Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis.


Journal of Virology | 2010

Structural Insights into the Molecular Mechanisms of Cauliflower Mosaic Virus Transmission by Its Insect Vector

François Hoh; Marilyne Uzest; Martin Drucker; Célia Plisson-Chastang; Patrick Bron; Stéphane Blanc; Christian Dumas

ABSTRACT Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.


Journal of Virology | 2013

Virus factories of Cauliflower mosaic virus are virion reservoirs that engage actively in vector-transmission

Aurélie Bak; Daniel Gargani; Jean Luc Macia; Enrick Malouvet; Marie-Stéphanie Vernerey; Stéphane Blanc; Martin Drucker

ABSTRACT Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.


Journal of Virology | 2001

Biochemical Characterization of the Helper Component of Cauliflower Mosaic Virus

Eugénie Hébrard; Martin Drucker; Denis Leclerc; Thomas Hohn; Marilyne Uzest; Rémy Froissart; Jean-Marc Strub; Sarah Sanglier; Alain Van Dorsselaer; André Padilla; Gilles Labesse; Stéphane Blanc

ABSTRACT The helper component of Cauliflower mosaic virus is encoded by viral gene II. This protein (P2) is dispensable for virus replication but required for aphid transmission. The purification of P2 has never been reported, and hence its biochemical properties are largely unknown. We produced the P2 protein via a recombinant baculovirus with a His tag fused at the N terminus. The fusion protein was purified by affinity chromatography in a soluble and biologically active form. Matrix-assisted laser desorption time-of-flight mass spectrometry demonstrated that P2 is not posttranslationally modified. UV circular dichroism revealed the secondary structure of P2 to be 23% α-helical. Most α-helices are suggested to be located in the C-terminal domain. Using size exclusion chromatography and aphid transmission testing, we established that the active form of P2 assembles as a huge soluble oligomer containing 200 to 300 subunits. We further showed that P2 can also polymerize as long paracrystalline filaments. We mapped P2 domains involved in P2 self-interaction, presumably through coiled-coil structures, one of which is proposed to form a parallel trimer. These regions have previously been reported to also interact with viral P3, another protein involved in aphid transmission. Possible interference between the two types of interaction is discussed with regard to the biological activity of P2.

Collaboration


Dive into the Martin Drucker's collaboration.

Top Co-Authors

Avatar

Stéphane Blanc

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar

Daniel Gargani

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Bak

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Blanc

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar

Eugénie Hébrard

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Rémy Froissart

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jean Luc Macia

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thierry Candresse

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge