Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin E. Budd is active.

Publication


Featured researches published by Martin E. Budd.


Molecular and Cellular Biology | 1997

A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function.

Martin E. Budd; Judith L. Campbell

We have recently described a new helicase, the Dna2 helicase, that is essential for yeast DNA replication. We now show that the yeast FEN-1 (yFEN-1) nuclease interacts genetically and biochemically with Dna2 helicase. FEN-1 is implicated in DNA replication and repair in yeast, and the mammalian homolog of yFEN-1 (DNase IV, FEN-1, or MF1) participates in Okazaki fragment maturation. Overproduction of yFEN-1, encoded by RAD27/RTH1, suppresses the temperature-sensitive growth of dna2-1 mutants. Overproduction of Dna2 suppresses the rad27/rth1 delta temperature-sensitive growth defect. dna2-1 rad27/rth1 delta double mutants are inviable, indicating that the mutations are synthetically lethal. The genetic interactions are likely due to direct physical interaction between the two proteins, since both epitope-tagged yFEN-1 and endogenous yFEN-1 coimmunopurify with tagged Dna2. The simplest interpretation of these data is that one of the roles of Dna2 helicase is associated with processing of Okazaki fragments.


Molecular Cell | 2008

Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint.

Huiqiang Lou; Makiko Komata; Yuki Katou; Zhiyun Guan; Clara C. Reis; Martin E. Budd; Katsuhiko Shirahige; Judith L. Campbell

Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.


Molecular and Cellular Biology | 2006

Evidence Suggesting that Pif1 Helicase Functions in DNA Replication with the Dna2 Helicase/Nuclease and DNA Polymerase {delta}

Martin E. Budd; Clara C. Reis; Stephanie Smith; Kyungjae Myung; Judith L. Campbell

ABSTRACT The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1Δ dna2Δ strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol δ, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32Δ strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol δ and/or by an as yet unidentified helicase. Thus, suppression of dna2Δ can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1Δ mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.


Journal of Biological Chemistry | 1995

DNA2 Encodes a DNA Helicase Essential for Replication of Eukaryotic Chromosomes

Martin E. Budd; Wonchae Choe; Judith L. Campbell

Although a number of eukaryotic DNA helicases have been identified biochemically and still more have been inferred from the amino acid sequences of the products of cloned genes, none of the cellular helicases or putative helicases has to date been implicated in eukaryotic chromosomal DNA replication. By the same token, numerous eukaryotic replication proteins have been identified, but none of these is a helicase. We have recently identified and characterized a temperature-sensitive yeast mutant, dna2ts, defective in DNA replication, and have cloned the corresponding gene (Kuo, C.-L., Huang, C.-H., and Campbell, J. L.(1983) Proc. Natl. Acad. Sci. U. S. A. 30, 6465-6469; Budd, M. E., and Campbell, J. L.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7642-7646). The DNA2 gene is essential and encodes a 172-kDa protein with DNA helicase motifs in its C-terminal half and an N-terminal half with no similarity to any previously described protein (Budd, M. E., and Campbell, J. L.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7642-7646). Here we show that the helicase domain is required in vivo and that a 3′ to 5′ DNA helicase activity specific for forked substrates is intrinsic to the Dna2p. The N terminus is also essential for DNA replication. Thus, the structure of this new helicase is different from all previously characterized replicative helicases, which is consistent with the complex organization of eukaryotic replication forks, where the activities of not one but three essential DNA polymerases must be coordinated.


Molecular and Cellular Biology | 1993

DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae.

Martin E. Budd; Judith L. Campbell

Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.


Molecular and Cellular Biology | 1995

DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae

Martin E. Budd; Judith L. Campbell

The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.


Cell | 1989

DNA polymerase III, a second essential DNA polymerase, is encoded by the S. cerevisiae CDC2 gene.

Karen C. Sitney; Martin E. Budd; Judith L. Campbell

Three nuclear DNA polymerases have been described in yeast: DNA polymerases I, II, and III. DNA polymerase I is encoded by the POL1 gene and is essential for DNA replication. Since the S. cerevisiae CDC2 gene has recently been shown to have DNA sequence similarity to the active site regions of other known DNA polymerases, but to nevertheless be different from DNA polymerase I, we examined cdc2 mutants for the presence of DNA polymerases II and III. DNA polymerase II was not affected by the cdc2 mutation. DNA polymerase III activity was significantly reduced in the cdc2-1 cell extracts. We conclude that the CDC2 gene encodes yeast DNA polymerase III and that DNA polymerase III, therefore, represents a second essential DNA polymerase in yeast.


PLOS Genetics | 2005

A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability

Martin E. Budd; Amy Hin Yan Tong; Piotr Polaczek; Xiao Peng; Charles Boone; Judith L. Campbell

To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.


Molecular and Cellular Biology | 2002

Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication

Wonchae Choe; Martin E. Budd; Osamu Imamura; Laura L. Mays Hoopes; Judith L. Campbell

ABSTRACT We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G1 phase, when there is no telomere replication and the telomere is transcriptionally silenced. In S phase, there is a dramatic redistribution of Dna2p from telomeres to sites throughout the replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G2 and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount of Dna2p found at telomeres by two different assays, one-hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of double-strand-break-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase.


Molecular and Cellular Biology | 1989

DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae.

Martin E. Budd; K D Wittrup; James E. Bailey; Judith L. Campbell

We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I.

Collaboration


Dive into the Martin E. Budd's collaboration.

Top Co-Authors

Avatar

Judith L. Campbell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tao Weitao

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wonchae Choe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Clara C. Reis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Piotr Polaczek

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karen C. Sitney

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Barbara J. Wold

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Huiqiang Lou

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Igor Antoshechkin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

K D Wittrup

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge