Martin Ehrbar
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Ehrbar.
The FASEB Journal | 2003
Andreas H. Zisch; Matthias P. Lutolf; Martin Ehrbar; George Raeber; Simone C. Rizzi; Neil Davies; Hugo Schmökel; Deon Bezuidenhout; Valentin Djonov; Peter Zilla; Jeffrey A. Hubbell
Local, controlled induction of angiogenesis remains a challenge that limits tissue engineering approaches to replace or restore diseased tissues. We present a new class of bioactive synthetic hydrogel matrices based on poly(ethylene glycol) (PEG) and synthetic peptides that exploits the activity of vascular endothelial growth factor (VEGF) alongside the base matrix functionality for cellular ingrowth, that is, induction of cell adhesion by pendant RGD‐containing peptides and provision of cell‐mediated remodeling by cross‐linking matrix metalloproteinase substrate peptides. By using a Michael‐type addition reaction, we incorporated variants of VEGF121 and VEGF165 covalently within the matrix, available for cells as they invade and locally remodel the material. The functionality of the matrix‐conjugated VEGF was preserved and was critical for in vitro endothelial cell survival and migration within the matrix environment. Consistent with a scheme of locally restricted availability of VEGF, grafting of these VEGF‐modified hydrogel matrices atop the chick chorioallontoic membrane evoked strong new blood vessel formation precisely at the area of graft‐membrane contact. When implanted subcutaneously in rats, these VEGF‐containing matrices were completely remodeled into native, vascularized tissue. This type of synthetic, biointeractive matrix with integrated angiogenic growth factor activity, presented and released only upon local cellular demand, could become highly useful in a number of clinical healing applications of local therapeutic angiogenesis.
Circulation Research | 2004
Martin Ehrbar; Valentin Djonov; Christian Schnell; Stefan A. Tschanz; Georg Martiny-Baron; Ursula Schenk; Jeanette Marjorie Wood; Peter H. Burri; Jeffrey A. Hubbell; Andreas H. Zisch
Abstract— Although vascular endothelial growth factor (VEGF) has been described as a potent angiogenic stimulus, its application in therapy remains difficult: blood vessels formed by exposure to VEGF tend to be malformed and leaky. In nature, the principal form of VEGF possesses a binding site for ECM components that maintain it in the immobilized state until released by local cellular enzymatic activity. In this study, we present an engineered variant form of VEGF, &agr;2PI1–8- VEGF121, that mimics this concept of matrix-binding and cell-mediated release by local cell–associated enzymatic activity, working in the surgically-relevant biological matrix fibrin. We show that matrix-conjugated &agr;2 PI1–8- VEGF121 is protected from clearance, contrary to native VEGF121 mixed into fibrin, which was completely released as a passive diffusive burst. Grafting studies on the embryonic chicken chorioallantoic membrane (CAM) and in adult mice were performed to assess and compare the quantity and quality of neovasculature induced in response to fibrin implants formulated with matrix-bound &agr;2 PI1–8- VEGF121 or native diffusible VEGF121. Our CAM measurements demonstrated that cell-demanded release of &agr;2 PI1–8- VEGF121 increases the formation of new arterial and venous branches, whereas exposure to passively released wild-type VEGF121 primarily induced chaotic changes within the capillary plexus. Specifically, our analyses at several levels, from endothelial cell morphology and endothelial interactions with periendothelial cells, to vessel branching and network organization, revealed that &agr;2 PI1–8- VEGF121 induces vessel formation more potently than native VEGF121 and that those vessels possess more normal morphologies at the light microscopic and ultrastructural level. Permeability studies in mice validated that vessels induced by &agr;2 PI1–8- VEGF121 do not leak. In conclusion, cell-demanded release of engineered VEGF121 from fibrin implants may present a therapeutically safe and practical modality to induce local angiogenesis.
Biophysical Journal | 2011
Martin Ehrbar; Ana Sala; Philipp S. Lienemann; Adrian Ranga; Katarzyna Mosiewicz; A Bittermann; Simone C. Rizzi; Franz E. Weber; Matthias P. Lutolf
Reductionist in vitro model systems which mimic specific extracellular matrix functions in a highly controlled manner, termed artificial extracellular matrices (aECM), have increasingly been used to elucidate the role of cell-ECM interactions in regulating cell fate. To better understand the interplay of biophysical and biochemical effectors in controlling three-dimensional cell migration, a poly(ethylene glycol)-based aECM platform was used in this study to explore the influence of matrix cross-linking density, represented here by stiffness, on cell migration in vitro and in vivo. In vitro, the migration behavior of single preosteoblastic cells within hydrogels of varying stiffness and susceptibilities to degradation by matrix metalloproteases was assessed by time-lapse microscopy. Migration behavior was seen to be strongly dependent on matrix stiffness, with two regimes identified: a nonproteolytic migration mode dominating at relatively low matrix stiffness and proteolytic migration at higher stiffness. Subsequent in vivo experiments revealed a similar stiffness dependence of matrix remodeling, albeit less sensitive to the matrix metalloprotease sensitivity. Therefore, our aECM model system is well suited to unveil the role of biophysical and biochemical determinants of physiologically relevant cell migration phenomena.
Nature Materials | 2008
Martin Ehrbar; Ronald Schoenmakers; Erik H. Christen; Martin Fussenegger; Wilfried Weber
Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF(121) for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.
Nature Materials | 2013
Katarzyna Mosiewicz; Laura Kolb; André J. van der Vlies; Mikaël M. Martino; Philipp S. Lienemann; Jeffrey A. Hubbell; Martin Ehrbar; Matthias P. Lutolf
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)--a key ECM crosslinking enzyme--is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.
Nucleic Acids Research | 2013
Konrad Müller; Raphael Engesser; Stéphanie Metzger; Simon Schulz; Michael M. Kämpf; Moritz Busacker; Thorsten Steinberg; Pascal Tomakidi; Martin Ehrbar; Ferenc Nagy; Jens Timmer; Matias Dr. Zubriggen; Wilfried Weber
Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system’s performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.
Acta Biomaterialia | 2009
Oliver Schneider; Franz E. Weber; Tobias J. Brunner; Stefan Loher; Martin Ehrbar; Patrick R. Schmidlin; Wendelin J. Stark
The easy clinical handling and applicability of biomaterials has become a focus of materials research due to rapidly increasing time and cost pressures in the public health sector. The present study assesses the in vitro and in vivo performance of a flexible, mouldable, cottonwool-like nanocomposite based on poly(lactide-co-glycolide) and amorphous tricalcium phosphate nanoparticles (PLGA/TCP 60:40). Immersion in simulated body fluid showed exceptional in vitro bioactivity for TCP-containing fibres (mass gain: 18%, 2 days, HAp deposition). Bone regeneration was quantitatively investigated by creating four circular non-critical-size calvarial defects in New Zealand White rabbits. The defects were filled with the easy applicable cottonwool-like PLGA/TCP fibres or PLGA alone. Porous bovine-derived mineral (Bio-Oss) was used as a positive control and cavities left empty served as a negative control. The area fraction of newly formed bone (4 weeks implantation) was significantly increased for TCP-containing fibres compared to pure PLGA (histological and micro-computed tomographic analysis). A spongiosa-like structure of the newly formed bone tissue was observed for PLGA/TCP nanocomposites, whereas Bio-Oss-treated defects afforded a solid cortical bone.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Veronica Sacchi; Rainer Mittermayr; Joachim Hartinger; Mikaël M. Martino; Kristen M. Lorentz; Susanne Wolbank; Anna Hofmann; Remo A. Largo; Jeffrey S. Marschall; Elena Groppa; Roberto Gianni-Barrera; Martin Ehrbar; Jeffrey A. Hubbell; Heinz Redl; Andrea Banfi
Significance Inducing the growth of new blood vessels by specific factors is an attractive strategy to restore blood flow in ischemic tissues. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, yet clinical trials of VEGF gene delivery failed. Major challenges include the need to control the tissue distribution of factor dose and the duration of expression. Here, we developed a highly tunable fibrin-based platform to precisely control the dose and duration of VEGF protein delivery in tissues. Optimized delivery of fibrin-bound VEGF ensured normal, stable, and functional angiogenesis and improved perfusion of ischemic tissues, without genetic modification and with limited duration of VEGF delivery. These findings suggest a strategy to improve both safety and efficacy of therapeutic angiogenesis. Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1–8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1–8–fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1–8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1–8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 μg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01–5.0 μg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1–8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.
Biomaterials | 2011
Orane Guillaume-Gentil; Oleg V. Semenov; Andreas H. Zisch; Roland Zimmermann; Janos Vörös; Martin Ehrbar
Widely used in different biomedical applications, polyelectrolyte multilayers provide inter alia an attractive way for manufacturing of bio-functionalized, stimuli responsive surface coatings to control cellular behavior. In this study a novel polyelectrolyte-based platform for the engineering and controllable detachment of human mesenchymal stem cell (MSC) sheets is presented. Thin films obtained by layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(styrene sulfonate) (PSS) polyelectrolytes on conductive indium tin oxide (ITO) electrodes allowed for the fast formation of viable sheets from human placenta-derived mesenchymal stem cells (PD-MSCs). Resulting stem cell sheets retained their phenotypical profile and mesodermal differentiation potency. Both electrochemically-induced local pH lowering and global decrease of the environmental pH allowed for a rapid detachment of intact stem cell sheets. The recovered stem cell sheets remained viable and maintained their capacity to differentiate toward the adipogenic and osteogenic lineages. This novel polyelectrolyte multilayer based platform represents a promising, novel approach for the engineering of human stem cell sheets desired for future clinical applications.
Prenatal Diagnosis | 2011
Claudia Haller; W. Buerzle; Carrie Brubaker; Phillip B. Messersmith; Edoardo Mazza; N. Ochsenbein-Koelble; Roland Zimmermann; Martin Ehrbar
Iatrogenic preterm premature rupture of membranes (iPPROM), the main complication of invasive interventions in the prenatal period, seriously limits the benefit of diagnostic or surgical prenatal procedures. This study aimed to evaluate preventive plugging of punctured fetal membranes in an ex vivo situation using a new mussel‐mimetic tissue adhesive (mussel glue) to inhibit leakage.