Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Figeac is active.

Publication


Featured researches published by Martin Figeac.


Neurobiology of Disease | 2011

Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology.

Karim Belarbi; Sylvie Burnouf; Francisco-Jose Fernandez-Gomez; Cyril Laurent; Sophie Lestavel; Martin Figeac; Audrey Sultan; Laetitia Troquier; Antoine Leboucher; Raphaëlle Caillierez; Marie-Eve Grosjean; Dominique Demeyer; Hélène Obriot; I. Brion; B. Barbot; Marie-Christine Galas; Bart Staels; Sandrine Humez; Nicolas Sergeant; Susanna Schraen-Maschke; Anne Muhr-Tailleux; Malika Hamdane; Luc Buée; David Blum

Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimers disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimers disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences.


Cancer Research | 2010

Autocrine Induction of Invasive and Metastatic Phenotypes by the MIF-CXCR4 Axis in Drug-Resistant Human Colon Cancer Cells

Anne-Frédérique Dessein; Laurence Stechly; Nicolas Jonckheere; Patrick Dumont; Didier Monté; Emmanuelle Leteurtre; Stéphanie Truant; François-René Pruvot; Martin Figeac; Mohamed Hebbar; Charles-Henri Lecellier; Thécla Lesuffleur; Rodrigue Dessein; Georges Grard; Marie-José Dejonghe; Yvan de Launoit; Yasuhiro Furuichi; Gregoire Prevost; Nicole Porchet; Christian Gespach; Guillemette Huet

Metastasis and drug resistance are major problems in cancer chemotherapy. The purpose of this work was to analyze the molecular mechanisms underlying the invasive potential of drug-resistant colon carcinoma cells. Cellular models included the parental HT-29 cell line and its drug-resistant derivatives selected after chronic treatment with either 5-fluorouracil, methotrexate, doxorubicin, or oxaliplatin. Drug-resistant invasive cells were compared with noninvasive cells using cDNA microarray, quantitative reverse transcription-PCR, flow cytometry, immunoblots, and ELISA. Functional and cellular signaling analyses were undertaken using pharmacologic inhibitors, function-blocking antibodies, and silencing by retrovirus-mediated RNA interference. 5-Fluorouracil- and methotrexate-resistant HT-29 cells expressing an invasive phenotype in collagen type I and a metastatic behavior in immunodeficient mice exhibited high expression of the chemokine receptor CXCR4. Macrophage migration-inhibitory factor (MIF) was identified as the critical autocrine CXCR4 ligand promoting invasion in drug-resistant colon carcinoma HT-29 cells. Silencing of CXCR4 and impairing the MIF-CXCR4 signaling pathways by ISO-1, pAb FL-115, AMD-3100, monoclonal antibody 12G5, and BIM-46187 abolished this aggressive phenotype. Induction of CXCR4 was associated with the upregulation of two genes encoding transcription factors previously shown to control CXCR4 expression (HIF-2alpha and ASCL2) and maintenance of intestinal stem cells (ASCL2). Enhanced CXCR4 expression was detected in liver metastases resected from patients with colon cancer treated by the standard FOLFOX regimen. Combination therapies targeting the CXCR4-MIF axis could potentially counteract the emergence of the invasive metastatic behavior in clonal derivatives of drug-resistant colon cancer cells.


Blood | 2016

Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas

David Vallois; Maria Pamela Dobay; Ryan D. Morin; François Lemonnier; Edoardo Missiaglia; Mélanie Juilland; Justyna Iwaszkiewicz; Virginie Fataccioli; Bettina Bisig; Annalisa Roberti; Jasleen Grewal; Julie Bruneau; Bettina Fabiani; Antoine Martin; Christophe Bonnet; Olivier Michielin; Jean-Philippe Jais; Martin Figeac; Olivier A. Bernard; Mauro Delorenzi; Corinne Haioun; Olivier Tournilhac; Margot Thome; Randy D. Gascoyne; Philippe Gaulard; Laurence de Leval

Angioimmunoblastic T-cell lymphoma (AITL) and other lymphomas derived from follicular T-helper cells (TFH) represent a large proportion of peripheral T-cell lymphomas (PTCLs) with poorly understood pathogenesis and unfavorable treatment results. We investigated a series of 85 patients with AITL (n = 72) or other TFH-derived PTCL (n = 13) by targeted deep sequencing of a gene panel enriched in T-cell receptor (TCR) signaling elements. RHOA mutations were identified in 51 of 85 cases (60%) consisting of the highly recurrent dominant negative G17V variant in most cases and a novel K18N in 3 cases, the latter showing activating properties in in vitro assays. Moreover, half of the patients carried virtually mutually exclusive mutations in other TCR-related genes, most frequently in PLCG1 (14.1%), CD28 (9.4%, exclusively in AITL), PI3K elements (7%), CTNNB1 (6%), and GTF2I (6%). Using in vitro assays in transfected cells, we demonstrated that 9 of 10 PLCG1 and 3 of 3 CARD11 variants induced MALT1 protease activity and increased transcription from NFAT or NF-κB response element reporters, respectively. Collectively, the vast majority of variants in TCR-related genes could be classified as gain-of-function. Accordingly, the samples with mutations in TCR-related genes other than RHOA had transcriptomic profiles enriched in signatures reflecting higher T-cell activation. Although no correlation with presenting clinical features nor significant impact on survival was observed, the presence of TCR-related mutations correlated with early disease progression. Thus, targeting of TCR-related events may hold promise for the treatment of TFH-derived lymphomas.


Blood | 2014

Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/ RUNX1-RUNX1T1 chromosomal translocations

Jean-Baptiste Micol; Nicolas Duployez; Nicolas Boissel; Arnaud Petit; Sandrine Geffroy; Olivier Nibourel; Catherine Lacombe; Hélène Lapillonne; Pascaline Etancelin; Martin Figeac; Aline Renneville; Sylvie Castaigne; Guy Leverger; Norbert Ifrah; Hervé Dombret; Claude Preudhomme; Omar Abdel-Wahab; Eric Jourdan

Acute myeloid leukemia (AML) with t(8;21) (q22;q22) is considered to have favorable risk; however, nearly half of t(8;21) patients are not cured, and recent studies have highlighted remarkable genetic heterogeneity in this subset of AML. Here we identify somatic mutations in additional sex combs-like 2 (ASXL2) in 22.7% (25/110) of patients with t(8;21), but not in patients with inv(16)/t(16;16) (0/60) or RUNX1-mutated AML (0/26). ASXL2 mutations were similarly frequent in adults and children t(8;21) and were mutually exclusive with ASXL1 mutations. Although overall survival was similar between ASXL1 and ASXL2 mutant t(8;21) AML patients and their wild-type counterparts, patients with ASXL1 or ASXL2 mutations had a cumulative incidence of relapse of 54.6% and 36.0%, respectively, compared with 25% in ASXL1/2 wild-type counterparts (P = .226). These results identify a high-frequency mutation in t(8;21) AML and identify the need for future studies to investigate the clinical and biological relevance of ASXL2 mutations in this unique subset of AML.


Clinical Cancer Research | 2016

Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study.

Sydney Dubois; Pierre-Julien Viailly; Sylvain Mareschal; Elodie Bohers; Philippe Bertrand; Philippe Ruminy; Catherine Maingonnat; Jean-Philippe Jais; Pauline Peyrouze; Martin Figeac; Thierry Molina; Fabienne Desmots; Thierry Fest; Corinne Haioun; Thierry Lamy; Christiane Copie-Bergman; Josette Briere; Tony Petrella; Danielle Canioni; Bettina Fabiani; Bertrand Coiffier; Richard Delarue; Frédéric Peyrade; André Bosly; Marc André; Nicolas Ketterer; Gilles Salles; Hervé Tilly; Karen Leroy; Fabrice Jardin

Purpose: Next-generation sequencing (NGS) has detailed the genomic characterization of diffuse large B-cell lymphoma (DLBCL) by identifying recurrent somatic mutations. We set out to design a clinically feasible NGS panel focusing on genes whose mutations hold potential therapeutic impact. Furthermore, for the first time, we evaluated the prognostic value of these mutations in prospective clinical trials. Experimental Design: A Lymphopanel was designed to identify mutations in 34 genes, selected according to literature and a whole exome sequencing study of relapsed/refractory DLBCL patients. The tumor DNA of 215 patients with CD20+de novo DLBCL in the prospective, multicenter, and randomized LNH-03B LYSA clinical trials was sequenced to deep, uniform coverage with the Lymphopanel. Cell-of-origin molecular classification was obtained through gene expression profiling with HGU133+2.0 Affymetrix GeneChip arrays. Results: The Lymphopanel was informative for 96% of patients. A clear depiction of DLBCL subtype molecular heterogeneity was uncovered with the Lymphopanel, confirming that activated B-cell–like (ABC), germinal center B-cell like (GCB), and primary mediastinal B-cell lymphoma (PMBL) are frequently affected by mutations in NF-κB, epigenetic, and JAK–STAT pathways, respectively. Novel truncating immunity pathway, ITPKB, MFHAS1, and XPO1 mutations were identified as highly enriched in PMBL. Notably, TNFAIP3 and GNA13 mutations in ABC patients treated with R-CHOP were associated with significantly less favorable prognoses. Conclusions: This study demonstrates the contribution of NGS with a consensus gene panel to personalized therapy in DLBCL, highlighting the molecular heterogeneity of subtypes and identifying somatic mutations with therapeutic and prognostic impact. Clin Cancer Res; 22(12); 2919–28. ©2016 AACR. See related commentary by Lim and Elenitoba-Johnson, p. 2829


Leukemia | 2009

Recurrent genomic aberrations combined with deletions of various tumour suppressor genes may deregulate the G1/S transition in CD4+CD56+ haematodermic neoplasms and contribute to the aggressiveness of the disease

Fabrice Jardin; M Callanan; Dominique Penther; Philippe Ruminy; Xavier Troussard; Jean-Pierre Kerckaert; Martin Figeac; Françoise Parmentier; V Rainville; Iona Vaida; Philippe Bertrand; Anne Bénédicte Duval; Jean-Michel Picquenot; L Chaperot; Jean Pierre Marolleau; J Plumas; Hervé Tilly; Christian Bastard

CD4+CD56+ haematodermic neoplasms (HDN) constitute a rare disease characterized by aggressive clinical behaviour and a poor prognosis. Tumour cells from HDN are leukaemic counterparts of plasmacytoid dendritic cells (pDCs). Despite increased knowledge of the ontogenetic origin of these tumours, the genetic causes and oncogenic signalling events involved in malignant transformation are still unknown. To delineate novel candidate regions and disease-related genes, we studied nine typical CD4+CD56+ HDN cases using genome-wide high-resolution array comparative genomic hybridization (CGH). Genomic imbalances, which were predominantly losses, were frequently detected. Gross genomic losses or gains involving an entire chromosome were observed in eight cases. The most frequent imbalances were deletions of chromosome 9, chromosome 13 and partial losses affecting 17p or 12p. Combinations of deletions of tumour suppressor genes (TSG), namely RB1, CDKN1B (p27), CDKN2A, (p16ink4a, p14arf) or TP53 (p53), were observed in all cases. These results indicate that deletion events altering G1/S regulation are crucial for HDN oncogenesis. Furthermore, in addition to frequent sporadic gene losses, in one case we observed a 8q24 interstitial deletion that brought MYC closer to miR-30b/miR-30d, which may be related to their deregulation. Taken together, these results indicate that in addition to frequent G1/S checkpoint alterations, various genetic events could contribute to the chemoresistance of the tumour.


Oncotarget | 2015

IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association

Houria Debarri; Delphine Lebon; Christophe Roumier; Meyling Cheok; Alice Marceau-Renaut; Olivier Nibourel; Sandrine Geffroy; Nathalie Helevaut; Philippe Rousselot; Berengere Gruson; Claude Gardin; Marie-Lorraine Chretien; Shéhérazade Sebda; Martin Figeac; Céline Berthon; Bruno Quesnel; Nicolas Boissel; Sylvie Castaigne; Hervé Dombret; Aline Renneville; Claude Preudhomme

Acute myeloid leukemia (AML) is a heterogeneous disease. Even within the same NPM1-mutated genetic subgroup, some patients harbor additional mutations in FLT3, IDH1/2, DNMT3A or TET2. Recent studies have shown the prognostic significance of minimal residual disease (MRD) in AML but it remains to be determined which molecular markers are the most suitable for MRD monitoring. Recent advances in next-generation sequencing (NGS) have provided the opportunity to use multiple molecular markers. In this study, we used NGS technology to assess MRD in 31 AML patients enrolled in the ALFA-0701 trial and harboring NPM1 mutations associated to IDH1/2 or DNMT3A mutations. NPM1 mutation-based MRD monitoring was performed by RTqPCR. IDH1/2 and DNMT3A mutations were quantified by NGS using an Ion Torrent Proton instrument with high coverage (2 million reads per sample). The monitoringof IDH1/2 mutations showed that these mutations were reliable MRD markers that allowed the prediction of relapse in the majority of patients. Moreover, IDH1/2 mutation status predicted relapse or disease evolution in 100% of cases if we included the patient who developed myelodysplastic syndrome. In contrast, DNMT3A mutations were not correlated to the disease status, as we found that a preleukemic clone with DNMT3A mutation persisted in 40% of the patients who were in complete remission, reflecting the persistence of clonal hematopoiesis.


BMC Genomics | 2014

Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing

Mathieu Giraud; Mikaël Salson; Marc Duez; Céline Villenet; Sabine Quief; Aurélie Caillault; Nathalie Grardel; Christophe Roumier; Claude Preudhomme; Martin Figeac

BackgroundV(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up. However, the full breadth of lymphocyte diversity is not fully understood.ResultsWe propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms were applied to TR γ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with standard protocols.ConclusionsThe proposed algorithms provide new insight into the analysis of high-throughput sequencing data for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are implemented in a C++ open-source program called Vidjil.


Blood | 2016

Comprehensive mutational profiling of core binding factor acute myeloid leukemia

Nicolas Duployez; Alice Marceau-Renaut; Nicolas Boissel; Arnaud Petit; Maxime Bucci; Sandrine Geffroy; Hélène Lapillonne; Aline Renneville; Martin Figeac; Catherine Lacombe; Jean-Baptiste Micol; Omar Abdel-Wahab; Pascale Cornillet; Norbert Ifrah; Hervé Dombret; Guy Leverger; Eric Jourdan; Claude Preudhomme

Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML.


Clinical Cancer Research | 2016

Genomic Landscape of CXCR4 Mutations in Waldenström Macroglobulinemia.

Stéphanie Poulain; Christophe Roumier; Aurélie Venet-Caillault; Martin Figeac; Charles Herbaux; Guillemette Marot; Emmanuelle Doye; Elisabeth Bertrand; Sandrine Geffroy; Frédéric Leprêtre; Olivier Nibourel; Audrey Decambron; Eileen Mary Boyle; Aline Renneville; Sabine Tricot; Agnes Daudignon; Bruno Quesnel; Patrick Duthilleul; Claude Preudhomme; Xavier Leleu

Purpose: Whole-genome sequencing has revealed MYD88 L265P and CXCR4 mutations (CXCR4mut) as the most prevalent somatic mutations in Waldenström macroglobulinemia. CXCR4 mutation has proved to be of critical importance in Waldenström macroglobulinemia, in part due to its role as a mechanism of resistance to several agents. We have therefore sought to unravel the different aspects of CXCR4 mutations in Waldenström macroglobulinemia. Experimental Design: We have scanned the two coding exons of CXCR4 in Waldenström macroglobulinemia using deep next-generation sequencing and Sanger sequencing in 98 patients with Waldenström macroglobulinemia and correlated with SNP array landscape and mutational spectrum of eight candidate genes involved in TLR, RAS, and BCR pathway in an integrative study. Results: We found all mutations to be heterozygous, somatic, and located in the C-terminal domain of CXCR4 in 25% of the Waldenström macroglobulinemia. CXCR4 mutations led to a truncated receptor protein associated with a higher expression of CXCR4. CXCR4 mutations pertain to the same clone as to MYD88 L265P mutations but were mutually exclusive to CD79A/CD79B mutations (BCR pathway). We identified a genomic signature in CXCR4mut Waldenström macroglobulinemia traducing a more complex genome. CXCR4 mutations were also associated with gain of chromosome 4, gain of Xq, and deletion 6q. Conclusions: Our study panned out new CXCR4 mutations in Waldenström macroglobulinemia and identified a specific signature associated to CXCR4mut, characterized with complex genomic aberrations among MYD88L265P Waldenström macroglobulinemia. Our results suggest the existence of various genomic subgroups in Waldenström macroglobulinemia. Clin Cancer Res; 22(6); 1480–8. ©2015 AACR.

Collaboration


Dive into the Martin Figeac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Molina

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge