Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Foldyna is active.

Publication


Featured researches published by Martin Foldyna.


Nano Letters | 2012

Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

Linwei Yu; Franck Fortuna; Benedict O’Donnell; Taewoo Jeon; Martin Foldyna; Gennaro Picardi; Pere Roca i Cabarrocas

Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.


Journal of Applied Physics | 2010

Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry

Ingar Stian Nerbø; S. Le Roy; Martin Foldyna; Morten Kildemo; Elin Sondergard

Inclined GaSb nanopillars prepared by low energy ion sputtering with oblique ion beam incidence have been characterized by two different Mueller matrix ellipsometric tools. The optical properties of the nanopillars were found to be well described by a uniaxial anisotropic graded effective medium model. The pillar height and inclination angle were determined by fitting the parameters of the effective medium model to spectroscopic (1.44–2.88 eV) Mueller matrix measurements at multiple azimuth sample orientations. A set of different samples with various average pillar height and inclination angle was studied; results from the optical characterization correspond well with those from scanning electron microscopy analysis. For samples with nanopillars inclined by 45° or less, the height could be determined from a single Mueller matrix measurement at only one azimuth orientation, allowing real-time in situ observation of the formation. The nanopillars were also studied using a single wavelength angle resolved Mu...


Nano Letters | 2016

Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping

Alexandre Gaucher; Andrea Cattoni; Christophe Dupuis; Wanghua Chen; Romain Cariou; Martin Foldyna; Loı̈c Lalouat; Emmanuel Drouard; Christian Seassal; Pere Roca i Cabarrocas; Stéphane Collin

Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T < 275 °C), low-cost, and scalable techniques. Epitaxial c-Si layers are grown by PECVD at 160 °C and transferred on a glass substrate by anodic bonding and mechanical cleavage. A silver back mirror is combined with a front texturation based on an inverted nanopyramid array fabricated by nanoimprint lithography and wet etching. We demonstrate a short-circuit current density of 25.3 mA/cm(2) for an equivalent thickness of only 2.75 μm. External quantum efficiency (EQE) measurements are in very good agreement with FDTD simulations. We infer an optical path enhancement of 10 in the long wavelength range. A simple propagation model reveals that the low photon escape probability of 25% is the key factor in the light trapping mechanism. The main limitations of our current technology and the potential efficiencies achievable with contact optimization are discussed.


Scientific Reports | 2015

Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells

Linwei Yu; Soumyadeep Misra; Junzhuan Wang; Shengyi Qian; Martin Foldyna; Jun Xu; Yi Shi; Erik C. Johnson; Pere Roca i Cabarrocas

The radial junction (RJ) architecture has proven beneficial for the design of a new generation of high performance thin film photovoltaics. We herein carry out a comprehensive modeling of the light in-coupling, propagation and absorption profile within RJ thin film cells based on an accurate set of material properties extracted from spectroscopic ellipsometry measurements. This has enabled us to understand and evaluate the impact of varying several key parameters on the light harvesting in radially formed thin film solar cells. We found that the resonance mode absorption and antenna-like light in-coupling behavior in the RJ cell cavity can lead to a unique absorption distribution in the absorber that is very different from the situation expected in a planar thin film cell, and that has to be taken into account in the design of high performance RJ thin film solar cells. When compared to the experimental EQE response of real RJ solar cells, this modeling also provides an insightful and powerful tool to resolve the wavelength-dependent contributions arising from individual RJ units and/or from strong light trapping due to the presence of the RJ cell array.


Optics Letters | 2009

Experimental evidence for naturally occurring nondiagonal depolarizers

Razvigor Ossikovski; Martin Foldyna; Clément Fallet; Antonello De Martino

We report on two Stokes nondiagonalizable Mueller matrices experimentally observed in a biological and in an organic sample. These matrices are examples of naturally occurring nondiagonal depolarizers whose unique property is to preserve the degree of polarization of all but one totally polarized light state. The description of the experimental matrices within the theory of Bragg scattering on cholesteric liquid crystals, as well as their interpretation in physical and structural terms, are likewise addressed.


Nanotechnology | 2013

Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires

Linwei Yu; L. Rigutti; M. Tchernycheva; Soumyadeep Misra; Martin Foldyna; Gennaro Picardi; Pere Roca i Cabarrocas

Silicon nanowires (SiNWs) grown on low-cost substrates provide an ideal framework for the monolithic fabrication of radial junction photovoltaics. However, the quality of junction formation over a random matrix of SiNWs, fabricated via a vapor-liquid-solid (VLS) mechanism, has never been assessed in a realistic context. To address this, we probe the current response of individual radial junction solar cells under electron-beam and optical-beam excitations. Excellent current generation from the radial junction units, compared to their planar counterparts, has been recorded, indicating a high junction quality and effective doping in the ultra-thin SiNWs with diameters thinner than 20 nm. Interestingly, we found that the formation of radial junctions by plasma deposition can be quite robust against geometrical disorder and even the crossings of neighboring cell units. These results provide a strong support to the feasibility of building high-quality radial junction solar cells over high-throughput VLS-grown SiNWs on low-cost substrates.


Optics Express | 2011

Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment

Ingar Stian Nerbø; Sébastien Roy; Martin Foldyna; Elin Sondergard; Morten Kildemo

The formation of GaSb nanopillars by low energy ion sputtering is studied in real-time by spectroscopic Mueller matrix ellipsometry, from the initial formation in the smooth substrate until nanopillars with a height of 200-300 nm are formed. As the nanopillar height increased above 100 nm, coupling between orthogonal polarization modes was observed. Ex situ angle resolved Mueller polarimetry measurements revealed a 180° azimuth rotation symmetry in the off-diagonal Mueller elements, which can be explained by a biaxial material with different dielectric functions εx and εy in a plane parallel to the substrate. This polarization coupling can be caused by a tendency for local direction dependent alignment of the pillars, and such a tendency is confirmed by scanning electron microscopy. Such observations have not been made for GaSb nanopillars shorter than 100 nm, which have optical properties that can be modeled as a uniaxial effective medium.


ACS Applied Materials & Interfaces | 2016

Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires

Hezhi Zhang; Xing Dai; Nan Guan; Agnes Messanvi; Vladimir Neplokh; Valerio Piazza; Martin Vallo; Catherine Bougerol; F. H. Julien; A. V. Babichev; Nicolas Cavassilas; Marc Bescond; Fabienne Michelini; Martin Foldyna; Eric Gautier; Christophe Durand; J. Eymery; M. Tchernycheva

A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.


Archive | 2013

Advanced Mueller Ellipsometry Instrumentation and Data Analysis

Enric Garcia-Caurel; Razvigor Ossikovski; Martin Foldyna; Angelo Pierangelo; B. Drévillon; Antonello De Martino

The main object of this chapter is to give an overview the possibilities offered by instruments capable of measuring full Mueller matrices in the field of optical characterization. We have chosen to call these instruments Mueller ellipsometers in order to highlight their close relation with instruments traditionally used in ellipsometry. We want to make clear to the reader the place that Mueller ellipsometry takes with respect to standard ellipsometry by showing the similarities but also the differences among these techniques, both in instrumentation and data treatment. To do so the chapter starts by a review of the optical formalisms used in standard and Mueller ellipsometry respectively. In order to highlight the particularities and the advantages brought by Mueller ellipsometry, a special section is devoted to the algebraic properties of Mueller matrices and to the description of different ways to decompose them. Matrix decompositions are used to unveil the basic polarimetric properties of a the sample when a precise model is not available. Then follows a description of the most common optical configurations used to build standard ellipsometers. Special attention is paid to show what can and what cannot be measured with them. On the basis of this knowledge it is shown the interest of measuring whole Mueller matrices, in particular for samples characterized by complex anisotropy and/or depolarization. Among the numerous optical assemblies able to measure full Mueller matrices, most of them are laboratory prototypes, and only very few have been industrialized so far. Because an extensive and comparative review of all the Mueller ellipsometric instruments developed to date is clearly out of the scope of this chapter, we limit our description to four Mueller ellipsometers, two imaging and two spectroscopic systems that have been developed by us in the past years. The technical description of the Mueller ellipsometers is accompanied by some examples of applications which, without being exhaustive, are representative of the type of analyses performed in ellipsometry, and also illustrate the advantages that can be brought by modern Mueller ellipsometers to optical metrology, materials science and biomedicine.


Optics Express | 2009

Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices

Martin Foldyna; Enric Garcia-Caurel; Razvigor Ossikovski; A. De Martino; José J. Gil

The measurement of the Mueller matrix when the probing beam is placed on the boundary between two (or more) regions of the sample with different optical properties may lead to a depolarization in the Mueller matrix. The depolarization is due to the incoherent superposition of the optical responses of different sample regions in the probe beam. Despite of the depolarization, the measured Mueller matrix has information enough to subtract a Mueller matrix corresponding to one of the regions of sample provided that this subtracted matrix is non-depolarizing. For clarity, we will call these non-depolarizing Mueller matrices of one individual region of the sample simply as the non-depolarizing components. In the framework of the theory of Mueller matrix algebra, we have implemented a procedure allowing the retrieval of a non-depolarizing component from a depolarizing Mueller matrix constituted by the sum of several non-depolarizing components. In order to apply the procedure, the Mueller matrices of the rest of the non-depolarizing components have to be known. Here we present a numerical and algebraic approaches to implement the subtraction method. To illustrate our method as well as the performance of the two approaches, we present two practical examples. In both cases we have measured depolarizing Mueller matrices by positioning an illumination beam on the boundary between two and three different regions of a sample, respectively. The goal was to retrieve the non-depolarizing Mueller matrix of one of those regions from the measured depolarizing Mueller matrix. In order to evaluate the performance of the method we compared the subtracted matrix with the Mueller matrix of the selected region measured separately.

Collaboration


Dive into the Martin Foldyna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaromír Pištora

Technical University of Ostrava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanghua Chen

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge