Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Forsius is active.

Publication


Featured researches published by Martin Forsius.


Nature | 2007

Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry.

Dt Monteith; John L. Stoddard; Chris D. Evans; Heleen A. de Wit; Martin Forsius; Tore Høgåsen; Anders Wilander; Brit Lisa Skjelkvåle; D. S. Jeffries; Jussi Vuorenmaa; Bill Keller; Jiri Kopacek; Josef Vesely

Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through mechanisms related to climate change, nitrogen deposition or changes in land use, and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition. Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances. The increase in DOC concentrations in these regions appears unrelated to other climatic factors.


Nature | 1999

Regional trends in aquatic recovery from acidification in North America and Europe

John L. Stoddard; D. S. Jeffries; A. Lükewille; Thomas A. Clair; Peter J. Dillon; Charles T. Driscoll; Martin Forsius; M. Johannessen; Jeffrey S. Kahl; J.H. Kellogg; A. Kemp; J. Mannlo; Dt Monteith; Peter S. Murdoch; S. Patrick; A. Rebsdorl; Brit Lisa Skjelkvåle; M. P. Stainton; T. Traaen; H. Van Dam; Katherine E. Webster; J. Wleting; A. Wllander

Rates of acidic deposition from the atmosphere (‘acid rain’) have decreased throughout the 1980s and 1990s across large portions of North America and Europe. Many recent studies have attributed observed reversals in surface-water acidification at national and regional scales to the declining deposition. To test whether emissions regulations have led to widespread recovery in surface-water chemistry, we analysed regional trends between 1980 and 1995 in indicators of acidification (sulphate, nitrate and base-cation concentrations, and measured (Gran) alkalinity) for 205 lakes and streams in eight regions of North America and Europe. Dramatic differences in trend direction and strength for the two decades are apparent. In concordance with general temporal trends in acidic deposition, lake and stream sulphate concentrations decreased in all regions with the exception of Great Britain; all but one of these regions exhibited stronger downward trends in the 1990s than in the 1980s. In contrast, regional declines in lake and stream nitrate concentrations were rare and, when detected, were very small. Recovery in alkalinity, expected wherever strong regional declines in sulphate concentrations have occurred, was observed in all regions of Europe, especially in the 1990s, but in only one region (of five) in North America. We attribute the lack of recovery in three regions (south/central Ontario, the Adirondack/Catskill mountains and midwestern North America) to strong regional declines in base-cation concentrations that exceed the decreases in sulphate concentrations.


Environmental Pollution | 1998

Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe

Nancy B. Dise; Egbert Matzner; Martin Forsius

We evaluate the relationship between the carbon-to-nitrogen ratio (C:N) of the soil organic horizon and nitrate leaching in runoff or seepage water from 33 conifer forests across Europe. The sites span a geographical range covering 11 countries from Ireland to western Russia and Finland to the southern Alps, and encompass a wide range in throughfall nitrogen deposition. The aim of the study is to evaluate the hypothesis that the C:N ratio of the organic (OH) horizon can be used to estimate the level of leaching of nitrate from a forest ecosystem. The analysis suggests that C:N ratio can be an indicator of nitrate leaching for conifer forests across Europe if these ecosystems are grouped into broad categories of throughfall nitrogen deposition. At low levels of N deposition ( 20 kg N ha−1 year−1) N deposition, nitrate leaching increases with decreasing C:N ratio. In addition, for any given value of C:N, the level of nitrate leaching is higher at high N-deposition sites than at intermediate N-deposition sites. From the current data, OH horizon C:N ratio can give a reasonable estimate of the annual export flux of nitrate (95% confidence interval ca ±5 kg N ha−1 year−1) for sites receiving throughfall-N up to about 30 kg N ha−1 year−1. Above this level, the variability in the data increases, suggesting other factors may need consideration to refine estimates of nitrate leaching.


Environmental Biology of Fishes | 1995

How many fish populations in Finland are affected by acid precipitation

Martti Rask; Jaakko Mannio; Martin Forsius; Maximilian Posch; Pekka J. Vuorinen

SynopsisThe number of fish populations affected or lost from small lakes in southern and central Finland due to acid precipitation is estimated. Tolerance limits (pH and labile aluminum) of common fish species were obtained from a fish status survey of 80 lakes. These tolerance values were used to estimate the proportion of affected lakes from the water chemistry data of 783 statistically selected lakes. The proportion of anthropogenically acidified lakes was estimated by calculating pre-acidification pH and aluminum concentrations of the lakes, using a steady-state model based on water chemistry. The number of fish populations for which acidification has affected growth or population structure was estimated at between 2200 and 4400. Out of these, the number of fish populations that have disappeared due to acid precipitation would be about 1000–2000. Almost 60% of the affected or lost populations are roach, Rutilus rutilus, the most sensitive of the common fish species in small lakes in southern and central Finland. Less than 15% of the damaged population is European perch, Perca fluviatilis, the most common species. This is due to the substantially higher tolerance of perch to acidified water in comparison with roach.


Water Air and Soil Pollution | 1989

Finnish lake survey: the role of organic and anthropogenic acidity

Pirkko Kortelainen; Jaakko Mannio; Martin Forsius; Juha Kämäri; Matti Verta

A lake survey consisting of 987 randomly selected lakes was conducted in Finland in autumn 1987. The survey covered the whole country, and the water quality of the lakes can be considered as representative of the approximately 56 000 lakes larger than 0.01 km2 in Finland. The median TOC concentration is 12 mg L-1 and the median pH 6.3. The proportion of lakes with TOC concentrations > 5 mg L-1 in the whole country is 91 %. Organic anion is the main anion in the full data set (median 89 μeq L-1). The high organic matter concentrations in Finnish lakes are associated with catchment areas containing large proportions of peatlands and acid organic soils under coniferous forest. The survey demonstrated that organic matter strongly affects the acidity of lakes in Finland. The decreasing effect of organic matter on the pH values was demonstrated by both regression analysis and ion balances. At current deposition levels of *SO4 the pH of humic lakes in Finland is determined to a greater extent by high TOC concentrations than by *SO4 in most areas. In lakes with pH values lower than 5.5 the average organic anion contribution is 56 % and non-marine sulfate contribution 39 %. However, in the southern parts of the country, where the acidic deposition is highest, the minerogenic acidity commonly exceeds the catchment derived organic acidity.


Archive | 1990

Statistical Lake Survey in Finland: Regional Estimates of Lake Acidification

Martin Forsius; Juha Kämäri; Pirkko Kortelainen; Jaakko Mannio; Matti Verta; Kari Kinnunen

The Finnish Lake Survey, conducted in 1987, was designed to quantify the present extent of lake acidification in Finland. The surveyed lakes were selected statistically (n = 987), allowing estimation of lake frequencies, as well as corresponding variances, for any predetermined criteria. The median pH of the lakes was 6.3, median acid neutralizing capacity (ANC) 75 μeq l −1 and median sulphate concentration 71 μeq l−1. The organic anion was estimated to be the most significant anion in Finnish lakes (median 89μeq l−1). Sulphate concentrations in lakes corresponded to the pattern of acidic deposition, being highest in southern Finland. The acidity of Finnish lakes reflects the interaction of the atmospheric loading of sulphate, the catchment sensitivity, and the amount of organic anions present. The estimated proportion of acidic lakes (ANC ≤ 0 μeq l−1) in Finland was 12%, representing 4900 lakes. The proportion of the acidic lakes with pH < 5.3 estimated to be naturally acidic (original pH < 5.3), was 56–81%.


Science of The Total Environment | 2003

Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy

Martin Forsius; Jussi Vuorenmaa; Jaakko Mannio; Sanna Syri

The regional-scale response of Finnish headwater lakes to changes in acidifying deposition loads was studied using data from a national deposition monitoring network (19 stations), acidification monitoring lakes (163 lakes) and results of a statistically based national lake survey (873 lakes). Data from 1990 to 1999 were used for statistical trend analysis. A deposition model was used to assess changes in S and N deposition for the year 2010, assuming emission reductions according to two international agreements. The deposition of sulfate and H(+) showed statistically significant (Kendall-tau, P<0.05) decreasing trends at nearly all deposition stations. For N compounds, nearly all slopes were negative, but rarely statistically significant. Sulfate concentrations have declined in all types of small lakes throughout Finland in the 1990s (significant decline in 64-85% of the lakes in three different lake regions), indicating a clear response to S emission reductions and declined sulfate deposition. Base cation concentrations decreased in both deposition and lake water, especially in southern Finland, but to a lesser extent than sulfate concentrations. The median slope of the trend for Gran alkalinity in lakes ranged between 0.98 and 2.1 microeq l(-1) a(-1). Some 1400 (27%) of Finnish headwater lakes of size 4-100 ha were estimated to show statistically significant increases in Gran alkalinity (recovery). No large changes were observed in the lake water TOC concentrations. The reduction in S deposition is the main driving factor for the lake acidification recovery process in Finland. Deposition model calculations showed that further large reductions in S deposition beyond the 1999 level are not likely to occur by the year 2010, particularly for southeastern Finland. The mean estimated S deposition change by 2010 for the three lake regions in Finland was only between -0.9 and -6.6% for the two policy scenarios (UN/ECE Gothenburg protocol, EU NEC-directive), respectively. A slower acidification recovery of the lake ecosystems is, therefore, anticipated in the future.


Global Change Biology | 2013

Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling

Jussi Huotari; Hannu Nykänen; Martin Forsius; Lauri Arvola

Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land-use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well-determined subcatchments (total size 174.5 km(2)), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land-use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m(-2) (catchment) yr(-1), which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m(-2) yr(-1)); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m(-2) yr(-1)). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m(-2) yr(-1) and 0.1 ± 0.04 g C m(-2) yr(-1), respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.


Water Air and Soil Pollution | 1993

Critical loads of sulfur and nitrogen for lakes I: Model description and estimation of uncertainty

Maximilian Posch; Martin Forsius; Juha Kämäri

Presently considerable effort is devoted to the development of methods for estimating critical loads of acidic deposition. In this paper a steady-state mass balance model for lakes is presented, allowing the simultaneous calculation of critical loads of acidifying S and N deposition and their exceedance. Special emphasis is given to the derivation of model inputs and parameters and the quantification of their uncertainties. The inclusion of rate-limited processes in the model leads to the dependence of the critical loads not only on catchment properties but also on the loading to the ecosystem. As a consequence, critical load values have to be re-calculated whenever deposition patterns change. The methods presented in this study are used in an accompanying paper to derive regional distributions of critical loads of S and N for lakes in Finland and to quantify their uncertainties.


Water, Air, & Soil Pollution: Focus | 2004

Finnish Lake Survey: The Role of Catchment Attributes in Determining Nitrogen, Phosphorus, and Organic Carbon Concentrations

Miitta Rantakari; Pirkko Kortelainen; Jussi Vuorenmaa; Jaakko Mannio; Martin Forsius

This study is based on a Finnish lake survey conducted in 1995, a dataset of 874 statistically selected lakes from the national lake register. The dataset was divided into subgroups to evaluate lake water-catchment relationships in different geographical regions and in lakes of different size. In the three southernmost regions, the coefficients of determination in multiple regression equations varied between 0.40 and 0.53 for total nitrogen (TN) and between 0.37 and 0.53 for total phosphorus (TP); the best interpreters were agricultural land and water area in the catchment. In the two northernmost regions, TN concentrations in lake water were best predicted by the proportion of peatlands in the catchment, the catchment slope, and TP concentrations by lake elevation and latitude. Coefficients of determination in multiple regression equations in these northern regions varied between 0.39 and 0.67 for TN and between 0.41 and 0.52 for TP. For all the subsets formed, the best coefficients of determination explaining TN, TP, and total organic carbon (TOC) were obtained for a subset of large lakes (>10 km2), in which 72–83% of the variation was explained. This was probably due to large heterogeneous catchments of these lakes.

Collaboration


Dive into the Martin Forsius's collaboration.

Top Co-Authors

Avatar

Sirpa Kleemola

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Maximilian Posch

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar

Jussi Vuorenmaa

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Maria Holmberg

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard F. Wright

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Juha Kämäri

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar

Filip Moldan

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jaakko Mannio

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge