Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Frotscher is active.

Publication


Featured researches published by Martin Frotscher.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development.

Sandrine Marchais-Oberwinkler; Claudia Henn; Gabriele Möller; Tobias Klein; Matthias Negri; Alexander Oster; Alessandro Spadaro; Ruth Werth; Marie Wetzel; Kuiying Xu; Martin Frotscher; Rolf W. Hartmann; Jerzy Adamski

17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, Biological Evaluation and Pharmacokinetics of Bis(hydroxyphenyl) substituted Azoles, Thiophenes, Benzenes, and Aza-Benzenes as Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1)

Emmanuel Bey; Sandrine Marchais-Oberwinkler; Ruth Werth; Matthias Negri; Yaseen A. Al-Soud; Patricia Kruchten; Alexander Oster; Martin Frotscher; Barbara Birk; Rolf W. Hartmann

17beta-Estradiol (E2), the most potent female sex hormone, stimulates the growth of mammary tumors and endometriosis via activation of the estrogen receptor alpha (ERalpha). 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which is responsible for the catalytic reduction of the weakly active estrogen estrone (E1) into E2, is therefore discussed as a novel drug target. Recently, we have discovered a 2,5-bis(hydroxyphenyl) oxazole to be a potent inhibitor of 17beta-HSD1. In this paper, further structural optimizations were performed: 39 bis(hydroxyphenyl) azoles, thiophenes, benzenes, and aza-benzenes were synthesized and their biological properties were evaluated. The most promising compounds of this study show enhanced IC 50 values in the low nanomolar range, a high selectivity toward 17beta-HSD2, a low binding affinity to ERalpha, a good metabolic stability in rat liver microsomes, and a reasonable pharmacokinetic profile after peroral application. Calculation of the molecular electrostatic potentials revealed a correlation between 17beta-HSD1 inhibition and the electron density distribution.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, and Biological Evaluation of (Hydroxyphenyl)naphthalene and -quinoline Derivatives : Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) for the Treatment of Estrogen-Dependent Diseases

Martin Frotscher; Erika Ziegler; Sandrine Marchais-Oberwinkler; Patricia Kruchten; Alexander Neugebauer; Ludivine Fetzer; Christiane Scherer; Ursula Müller-Vieira; Josef Messinger; Hubert Thole; Rolf W. Hartmann

Human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent estradiol (E2). This reaction takes place in the target cell where the estrogenic effect is exerted via the estrogen receptor (ER). Estrogens, especially E2, are known to stimulate the proliferation of hormone-dependent diseases. 17beta-HSD1 is overexpressed in many breast tumors. Thus, it is an attractive target for the treatment of these diseases. Ligand- and structure-based drug design led to the discovery of novel, selective, and potent inhibitors of 17beta-HSD1. Phenyl-substituted bicyclic moieties were synthesized as mimics of the steroidal substrate. Computational methods were used to obtain insight into their interactions with the protein. Compound 5 turned out to be a highly potent inhibitor of 17beta-HSD1 showing good selectivity (17beta-HSD2, ERalpha and beta), medium cell permeation, reasonable metabolic stability (rat hepatic microsomes), and little inhibition of hepatic CYP enzymes.


Journal of Medicinal Chemistry | 2009

New Insights into the SAR and Binding Modes of Bis(hydroxyphenyl)thiophenes and -benzenes: Influence of Additional Substituents on 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitory Activity and Selectivity

Emmanuel Bey; Sandrine Marchais-Oberwinkler; Matthias Negri; Patricia Kruchten; Alexander Oster; Tobias Klein; Alessandro Spadaro; Ruth Werth; Martin Frotscher; Barbara Birk; Rolf W. Hartmann

17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is responsible for the catalytic reduction of weakly active E1 to highly potent E2. E2 stimulates the proliferation of hormone-dependent diseases via activation of the estrogen receptor alpha (ERalpha). Because of the overexpression of 17beta-HSD1 in mammary tumors, this enzyme should be an attractive target for the treatment of estrogen-dependent pathologies. Recently, we have reported on a series of potent 17beta-HSD1 inhibitors: bis(hydroxyphenyl) azoles, thiophenes, and benzenes. In this paper, different substituents are introduced into the core structure and the biological properties of the corresponding inhibitors are evaluated. Computational methods and analysis of different X-rays of 17beta-HSD1 lead to identification of two different binding modes for these inhibitors. The fluorine compound 23 exhibits an IC(50) of 8 nM and is the most potent nonsteroidal inhibitor described so far. It also shows a high selectivity (17beta-HSD2, ERalpha) and excellent pharmacokinetic properties after peroral application to rats.


Bioorganic & Medicinal Chemistry | 2008

Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases

Emmanuel Bey; Sandrine Marchais-Oberwinkler; Patricia Kruchten; Martin Frotscher; Ruth Werth; Alexander Oster; Oztekin Algül; Alexander Neugebauer; Rolf W. Hartmann

The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the reduction of the weakly active estrone (E1) into the most potent estrogen, 17beta-estradiol (E2). E2 stimulates the growth of hormone-dependent diseases via activation of the estrogen receptors (ERs). 17beta-HSD1 is often over-expressed in breast cancer cells. Thus, it is an attractive target for the treatment of mammary tumours. The combination of a ligand- and a structure-based drug design approach led to the identification of bis(hydroxyphenyl) azoles as potential inhibitors of 17beta-HSD1. Different azoles and hydroxy substitution patterns were investigated. The compounds were evaluated for activity and selectivity with regard to 17beta-HSD2, ERalpha and ERbeta. The most potent compound is 3-[5-(4-hydroxyphenyl)-1,3-oxazol-2-yl]phenol (18, IC(50)=0.31 microM), showing very good selectivity, high cell permeability and medium CaCo-2 permeability.


Journal of Medicinal Chemistry | 2008

Substituted 6-Phenyl-2-naphthols. Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Design, Synthesis, Biological Evaluation, and Pharmacokinetics

Sandrine Marchais-Oberwinkler; Patricia Kruchten; Martin Frotscher; Erika Ziegler; Alexander Neugebauer; Umadevi Bhoga; Emmanuel Bey; Ursula Müller-Vieira; Josef Messinger; Hubert Thole; Rolf W. Hartmann

17beta-Estradiol (E2) is implicated in the genesis and the development of estrogen-dependent diseases. Its concentration is mainly regulated by 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent E2. This enzyme is thus an important target for the treatment of hormone-dependent diseases. Thirty-seven novel substituted 6-phenyl-2-naphthols were synthesized and evaluated for 17beta-HSD1 inhibition, selectivity toward 17beta-HSD2 and the estrogen receptors (ERs) alpha and beta, and pharmacokinetic properties. SAR studies revealed that the compounds most likely bind according to binding mode B to the active site, i.e., the 6-phenyl moiety mimicking the steroidal A-ring. While substitution at the phenyl ring decreased activity, introduction of substituents at the naphthol moiety led to highly active compounds, especially in position 1. The 1-phenyl compound 32 showed a very high inhibitory activity for 17beta-HSD1 (IC50 = 20 nM) and good selectivity (17beta-HSD2 and ERs) and pharmacokinetic properties after peroral application.


Journal of Medicinal Chemistry | 2011

New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases

Sandrine Marchais-Oberwinkler; Marie Wetzel; Erika Ziegler; Patricia Kruchten; Ruth Werth; Claudia Henn; Rolf W. Hartmann; Martin Frotscher

Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a novel and attractive approach to reduce the local levels of the active estrogen 17β-estradiol in patients with estrogen-dependent diseases like breast cancer or endometriosis. With the aim of optimizing the biological profile of 17β-HSD1 inhibitors from the hydroxyphenylnaphthol class, structural optimizations were performed at the 1-position of the naphthalene by introduction of different heteroaromatic rings as well as substituted phenyl groups. In the latter class of compounds, which were synthesized applying Suzuki-cross coupling, the 3-methanesulfonamide 15 turned out to be a highly potent 17β-HSD1 inhibitor (IC(50) = 15 nM in a cell-free assay). It was also very active in the cellular assay (T47D cells, IC(50) = 71 nM) and selective toward 17β-HSD2 and the estrogen receptors α and β. It showed a good membrane permeation and metabolic stability and was orally available in the rat.


Molecular and Cellular Endocrinology | 2009

Development of a biological screening system for the evaluation of highly active and selective 17β-HSD1-inhibitors as potential therapeutic agents

Patricia Kruchten; Ruth Werth; Sandrine Marchais-Oberwinkler; Martin Frotscher; Rolf W. Hartmann

17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the intracellular conversion of oestrone (E1) to oestradiol (E2). E2 is known to be involved in the development and progression of breast cancer and endometriosis. Since 17beta-HSD1 is overexpressed in these oestrogen-dependent diseases, inhibition of this enzyme may be a more target-directed therapeutical approach compared to established medical treatments. For the identification of highly active and selective 17beta-HSD1-inhibitors that are suitable for application as potential therapeutics, there is a need for an appropriate, efficient and reliable screening system. Here, we report the development and application of our screening system using our in house library of potential 17beta-HSD1-inhibitors. Four potent and selective compounds with a good first pharmacokinetic profile were identified.


Journal of Medicinal Chemistry | 2010

Bicyclic Substituted Hydroxyphenylmethanones as Novel Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) for the Treatment of Estrogen-Dependent Diseases

Alexander Oster; Stefan Hinsberger; Ruth Werth; Sandrine Marchais-Oberwinkler; Martin Frotscher; Rolf W. Hartmann

Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in the target cell is regulated by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), which catalyzes E2-formation by reduction of the weak estrogen estrone (E1). Because the enzyme is expressed in the diseased tissues, inhibition of 17β-HSD1 is considered as a promising therapy for the treatment of estrogen-dependent diseases. For the development of novel inhibitors, a structure- and ligand-based design strategy was applied, resulting in bicyclic substituted hydroxyphenylmethanones. In vitro testing revealed high inhibitory potencies toward human placental 17β-HSD1. Compounds were further evaluated with regard to selectivity (17β-HSD2, estrogen receptors ERα and ERβ), intracellular activity (T47D cells), and metabolic stability. The most promising compounds, 14 and 15, showed IC(50) values in the low nanomolar range in the cell-free and cellular assays (8-27 nM), more than 30-fold selectivity toward 17β-HSD2 and no affinity toward the ERs. The data obtained make these inhibitors interesting candidates for further preclinical evaluation.


Bioorganic & Medicinal Chemistry | 2010

Novel estrone mimetics with high 17β-HSD1 inhibitory activity

Alexander Oster; Tobias Klein; Ruth Werth; Patricia Kruchten; Emmanuel Bey; Matthias Negri; Sandrine Marchais-Oberwinkler; Martin Frotscher; Rolf W. Hartmann

17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the reduction of estrone into estradiol, which is the most potent estrogen in humans. Lowering intracellular estradiol concentration by inhibition of this enzyme is a promising new option for the treatment of estrogen-dependent diseases like breast cancer and endometriosis. Combination of ligand- and structure-based design resulted in heterocyclic substituted biphenylols and their aza-analogs as new 17beta-HSD1 inhibitors. The design was based on mimicking estrone, especially focusing on the imitation of the D-ring keto group with (substituted) heterocycles. Molecular docking provided insights into plausible protein-ligand interactions for this class of compounds. The most promising compound 12 showed an inhibitory activity in the high nanomolar range and very low affinity for the estrogen receptors alpha and beta. Thus, compound 12 is a novel tool for the elucidation of the pharmacological relevance of 17beta-HSD1 and might be a lead for the treatment of estrogen-dependent diseases.

Collaboration


Dive into the Martin Frotscher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge