Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin G. De Kauwe is active.

Publication


Featured researches published by Martin G. De Kauwe.


New Phytologist | 2014

Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies

Soenke Zaehle; Belinda E. Medlyn; Martin G. De Kauwe; Anthony P. Walker; Michael C. Dietze; Thomas Hickler; Yiqi Luo; Ying-Ping Wang; Bassil El-Masri; Peter E. Thornton; Atul K. Jain; Shusen Wang; David Wårlind; Ensheng Weng; William J. Parton; Colleen M. Iversen; Anne Gallet-Budynek; Heather R. McCarthy; Adrien C. Finzi; Paul J. Hanson; I. Colin Prentice; Ram Oren; Richard J. Norby

We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.


New Phytologist | 2014

Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites.

Martin G. De Kauwe; Belinda E. Medlyn; Sönke Zaehle; Anthony P. Walker; Michael C. Dietze; Ying Ping Wang; Yiqi Luo; Atul K. Jain; Bassil El-Masri; Thomas Hickler; David Wårlind; Ensheng Weng; William J. Parton; Peter E. Thornton; Shusen Wang; I. Colin Prentice; Shinichi Asao; Benjamin Smith; Heather R. McCarthy; Colleen M. Iversen; Paul J. Hanson; Jeffrey M. Warren; Ram Oren; Richard J. Norby

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


New Phytologist | 2016

Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments

Richard J. Norby; Martin G. De Kauwe; Tomas F. Domingues; Remko A. Duursma; David S. Ellsworth; Daniel Goll; David M. Lapola; Kristina A. Luus; A. Rob MacKenzie; Belinda E. Medlyn; Ryan Pavlick; Anja Rammig; Benjamin Smith; Rick M. Thomas; Kirsten Thonicke; Anthony P. Walker; Sönke Zaehle

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


Global Biogeochemical Cycles | 2015

Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

Anthony P. Walker; Sönke Zaehle; Belinda E. Medlyn; Martin G. De Kauwe; Shinichi Asao; Thomas Hickler; William J. Parton; Daniel M. Ricciuto; Ying Ping Wang; David Wårlind; Richard J. Norby

Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. In addition, self-thinning assumptions had a substantial impact on C sequestration in two models. Accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2. (Less)


Scientific Reports | 2016

Impact of the representation of stomatal conductance on model projections of heatwave intensity

Jatin Kala; Martin G. De Kauwe; A. J. Pitman; Belinda E. Medlyn; Ying-Ping Wang; Ruth Lorenz; Sarah E. Perkins-Kirkpatrick

Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land surface component of climate models. However, stomatal conductance schemes commonly assume that all vegetation with the same photosynthetic pathway use identical plant water use strategies whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance measurements from 314 species, across 56 field sites. Using this new stomatal scheme, within a global climate model, subtantially increases the intensity of future heatwaves across Northern Eurasia. This indicates that our climate model has previously been under-predicting heatwave intensity. Our results have widespread implications for other climate models, many of which do not account for differences in stomatal water-use across different plant functional types, and hence, are also likely under projecting heatwave intensity in the future.


Tree Physiology | 2013

Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts?

Yan-Shih Lin; Belinda E. Medlyn; Martin G. De Kauwe; David S. Ellsworth

Plants show flexible acclimation of leaf photosynthesis to temperature that depends both on their prevailing growth environment and the climate where they originated. This acclimation has been shown to involve changes in the temperature responses of the apparent maximum rate of Rubisco carboxylation (Vcmax) and apparent maximum rate of electron transport (Jmax), as well as changes in the ratio of these parameters. We asked whether such changes in photosynthetic biochemistry attributable to climate of origin are similar in nature and magnitude to those attributable to growth environment. To address this question, we measured temperature responses of photosynthesis and chlorophyll fluorescence on six Eucalyptus species from diverse geographical and climatic regions growing in a common garden. Measurements were made in three seasons, allowing us to compare interspecific differences with seasonal changes. We found significant interspecific differences in apparent Vcmax and Jmax standardized to 25 °C, but there were no significant differences in the temperature responses of these parameters among species. Comparing data across seasons, we found significant seasonal changes in apparent Vcmax25, but not in Jmax25, causing a change in their ratio (J/V ratio). However, there were no seasonal changes in the temperature response of either parameter. We concluded that the growth environment had a much larger effect on temperature response than climate of origin among this set of species. Mean daytime temperature increased by 15 °C from winter to summer, whereas we estimated that the seasonal change in J/V ratio would cause a change in the optimum temperature (Topt) for gross photosynthesis of 3.6 °C. Use of a general relationship to describe photosynthetic temperature acclimation resulted in a strong underestimation of the Topt for photosynthesis for these species. Our results indicated that variation in photosynthetic temperature responses cannot be captured in one simple relationship with growth temperature. Further comparative research on species groups will be needed to develop a basis for modelling these interspecific differences in plant temperature acclimation.


New Phytologist | 2017

How do leaf and ecosystem measures of water-use efficiency compare?

Belinda E. Medlyn; Martin G. De Kauwe; Yan-Shih Lin; Jurgen Knauer; Remko A. Duursma; Christopher A. Williams; Almut Arneth; Robert Clement; Peter Isaac; Jean-Marc Limousin; Maj-Lena Linderson; Patrick Meir; Nicolas K. Martin-StPaul; Lisa Wingate

The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant water-use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE.


Nature | 2013

Biogeochemistry: Carbon dioxide and water use in forests

Belinda E. Medlyn; Martin G. De Kauwe

Plants are expected to respond to rising levels of atmospheric carbon dioxide by using water more efficiently. Direct evidence of this has been obtained from forests, but the size of the effect will prompt debate. See Letter p.324 Theory suggests that rising atmospheric CO2 concentrations should increase the efficiency with which plants use water, but the actual magnitude of this effect in natural forest ecosystems remains unknown. An analysis of long-term measurements of carbon and water fluxes from forest research sites across the Northern Hemisphere has identified an unexpectedly large increase in water-use efficiency during the past two decades, coinciding with an increase of atmospheric CO2 from 350 to 400 parts per million. This trend is often accompanied by concurrent increases in rates of photosynthetic uptake and carbon sequestration. The authors suggest partial closure of stomata — to maintain constant CO2 concentrations in the plant leaves — as the most likely explanation for the observed trend in water-use efficiency. The results are inconsistent with current theory and terrestrial biosphere models.


Global Change Biology | 2016

Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland

Belinda E. Medlyn; Martin G. De Kauwe; Sönke Zaehle; Anthony P. Walker; Remko A. Duursma; Kristina A. Luus; Mikhail Mishurov; Bernard Pak; Benjamin Smith; Ying Ping Wang; Kristine Y. Crous; John E. Drake; Teresa E. Gimeno; Catriona A. Macdonald; Richard J. Norby; Sally A. Power; Mark G. Tjoelker; David S. Ellsworth

The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.


Global Change Biology | 2017

Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment

Martin G. De Kauwe; Belinda E. Medlyn; Anthony P. Walker; Sönke Zaehle; Shinichi Asao; Bertrand Guenet; Anna B. Harper; Thomas Hickler; Atul K. Jain; Yiqi Luo; Xingjie Lu; Kristina A. Luus; William J. Parton; Shijie Shu; Ying Ping Wang; Christian Werner; Jianyang Xia; Elise Pendall; Jack A. Morgan; Edmund Ryan; Yolima Carrillo; Feike A. Dijkstra; Tamara J. Zelikova; Richard J. Norby

Abstract Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single‐factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above‐ground net primary productivity (range: 31–390 g C m−2 yr−1). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single‐factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2‐induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single‐factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.

Collaboration


Dive into the Martin G. De Kauwe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. Walker

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard J. Norby

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Ping Wang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Thomas Hickler

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge