Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin G. Latour is active.

Publication


Featured researches published by Martin G. Latour.


Diabetes | 2007

GPR40 Is Necessary but Not Sufficient for Fatty Acid Stimulation of Insulin Secretion In Vivo

Martin G. Latour; Thierry Alquier; Elizabeth Oseid; Caroline Tremblay; Thomas L. Jetton; Jian Luo; Daniel C.-H. Lin; Vincent Poitout

Long-chain fatty acids amplify insulin secretion from the pancreatic β-cell. The G-protein–coupled receptor GPR40 is specifically expressed in β-cells and is activated by fatty acids; however, its role in acute regulation of insulin secretion in vivo remains unclear. To this aim, we generated GPR40 knockout (KO) mice and examined glucose homeostasis, insulin secretion in response to glucose and Intralipid in vivo, and insulin secretion in vitro after short- and long-term exposure to fatty acids. Our results show that GPR40 KO mice have essentially normal glucose tolerance and insulin secretion in response to glucose. Insulin secretion in response to Intralipid was reduced by ∼50%. In isolated islets, insulin secretion in response to glucose and other secretagogues was unaltered, but fatty acid potentiation of insulin release was markedly reduced. The Gαq/11 inhibitor YM-254890 dose-dependently reduced palmitate potentiation of glucose-induced insulin secretion. Islets from GPR40 KO mice were as sensitive to fatty acid inhibition of insulin secretion upon prolonged exposure as islets from wild-type animals. We conclude that GPR40 contributes approximately half of the full acute insulin secretory response to fatty acids in mice but does not play a role in the mechanisms by which fatty acids chronically impair insulin secretion.


Diabetes | 2008

The Fatty-Acid Receptor GPR40 Plays a Role in Insulin Secretion In Vivo After High-Fat Feeding

Melkam Kebede; Thierry Alquier; Martin G. Latour; Meriem Semache; Caroline Tremblay; Vincent Poitout

OBJECTIVE—The G-protein–coupled receptor GPR40 is expressed in pancreatic β-cells and is activated by long-chain fatty acids. Gene deletion studies have shown that GPR40 mediates, at least in part, fatty acid–amplification of glucose-induced insulin secretion (GSIS) but is not implicated in GSIS itself. However, the role of GPR40 in the long-term effects of fatty acids on insulin secretion remains controversial. This study aimed to test the hypothesis that GPR40 plays a role in insulin secretion after high-fat feeding. RESEARCH DESIGN AND METHODS—GPR40 knockout (KO) mice on a C57BL/6 background and their wild-type (WT) littermates were fed a high-fat diet (HFD) for 11 weeks. Glucose tolerance, insulin tolerance, and insulin secretion in response to glucose and Intralipid were assessed during the course of the diet period. RESULTS—GPR40 KO mice had fasting hyperglycemia. They became as obese, glucose intolerant, and insulin resistant as their WT littermates given HFD and developed a similar degree of liver steatosis. Their fasting blood glucose levels increased earlier than those of control mice during the course of the HFD. The remarkable increase in insulin secretory responses to intravenous glucose and Intralipid seen in WT mice after HFD was of much lower magnitude in GPR40 KO mice. CONCLUSIONS—GPR40 plays a role not only in fatty acid modulation of insulin secretion, but also in GSIS after high-fat feeding. These observations raise doubts on the validity of a therapeutic approach based on GPR40 antagonism for the treatment of type 2 diabetes.


Journal of Clinical Investigation | 2011

Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes

Joseph P. Tiano; Viviane Delghingaro-Augusto; Cedric Le May; Suhuan Liu; Meenakshi Kaw; Saja S. Khuder; Martin G. Latour; Surabhi A. Bhatt; Kenneth S. Korach; Sonia M. Najjar; Marc Prentki; Franck Mauvais-Jarvis

The failure of pancreatic β cells to adapt to an increasing demand for insulin is the major mechanism by which patients progress from insulin resistance to type 2 diabetes (T2D) and is thought to be related to dysfunctional lipid homeostasis within those cells. In multiple animal models of diabetes, females demonstrate relative protection from β cell failure. We previously found that the hormone 17β-estradiol (E2) in part mediates this benefit. Here, we show that treating male Zucker diabetic fatty (ZDF) rats with E2 suppressed synthesis and accumulation of fatty acids and glycerolipids in islets and protected against β cell failure. The antilipogenic actions of E2 were recapitulated by pharmacological activation of estrogen receptor α (ERα) or ERβ in a rat β cell line and in cultured ZDF rat, mouse, and human islets. Pancreas-specific null deletion of ERα in mice (PERα-/-) prevented reduction of lipid synthesis by E2 via a direct action in islets, and PERα-/- mice were predisposed to islet lipid accumulation and β cell dysfunction in response to feeding with a high-fat diet. ER activation inhibited β cell lipid synthesis by suppressing the expression (and activity) of fatty acid synthase via a nonclassical pathway dependent on activated Stat3. Accordingly, pancreas-specific deletion of Stat3 in mice curtailed ER-mediated suppression of lipid synthesis. These data suggest that extranuclear ERs may be promising therapeutic targets to prevent β cell failure in T2D.


Diabetes | 2010

β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass

Marie-Line Peyot; Émilie Pepin; Julien Lamontagne; Martin G. Latour; Bader Zarrouki; Roxane Lussier; Marco Pineda; Thomas L. Jetton; S. R. Murthy Madiraju; Erik Joly; Marc Prentki

OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca2+ was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca2+ and lipid signaling, as well as free cholesterol deposition.


Diabetes | 2009

Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

Thierry Alquier; Marie Line Peyot; Martin G. Latour; Melkam Kebede; Christina M. Sorensen; Stephane Gesta; C. Ronald Kahn; Richard D. Smith; Thomas L. Jetton; Thomas O. Metz; Marc Prentki; Vincent Poitout

OBJECTIVE The G-protein–coupled receptor GPR40 mediates fatty acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. RESEARCH DESIGN AND METHODS Insulin secretion and sensitivity were assessed in GPR40 knockout mice and their wild-type littermates by hyperglycemic clamps and hyperinsulinemic euglycemic clamps, respectively. Transcriptomic analysis, metabolic studies, and lipid profiling were used to ascertain whether GPR40 modulates intracellular fuel metabolism in islets. RESULTS Both glucose- and arginine-stimulated insulin secretion in vivo were decreased by ∼60% in GPR40 knockout fasted and fed mice, without changes in insulin sensitivity. Neither gene expression profiles nor intracellular metabolism of glucose and palmitate in isolated islets were affected by GPR40 deletion. Lipid profiling of isolated islets revealed that the increase in triglyceride and decrease in lyso-phosphatidylethanolamine species in response to palmitate in vitro was similar in wild-type and knockout islets. In contrast, the increase in intracellular inositol phosphate levels observed in wild-type islets in response to fatty acids in vitro was absent in knockout islets. CONCLUSIONS These results indicate that deletion of GPR40 impairs insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism in islets, via a mechanism that may involve the generation of inositol phosphates downstream of GPR40 activation.


Diabetes, Obesity and Metabolism | 2009

Lipid receptors and islet function: therapeutic implications?

Melkam Kebede; Thierry Alquier; Martin G. Latour; Vincent Poitout

G‐protein coupled receptors (GPCRs) are targets of approximately 30% of currently marketed drugs. Over the last few years, a number of GPCRs expressed in pancreatic β‐cells and activated by lipids have been discovered. GPR40 was shown to be activated by medium‐ to long‐chain fatty acids (FAs). It has since been shown that GPR40 contributes to FA amplification of glucose‐induced insulin secretion. Although some controversy still exists as to whether GPR40 agonists or antagonists should be designed as novel type 2 diabetes drugs, data obtained in our laboratory and others strongly suggest that GPR40 agonism might represent a valuable therapeutic approach. GPR119 is expressed in pancreatic β‐cells and enteroendocrine L‐cells, and augments circulating insulin levels both through its direct insulinotropic action on β‐cells and through FA stimulation of glucagon‐like peptide 1 (GLP‐1) secretion. GPR120 is expressed in L‐cells and was also shown to mediate FA‐stimulated GLP‐1 release. Finally, GPR41 and GPR43 are receptors for short‐chain FAs and may indirectly regulate β‐cell function via adipokine secretion. Although the discovery of these various lipid receptors opens new and exciting avenues of research for drug development, a number of questions regarding their mechanisms of action and physiological roles remain to be answered.


Journal of Biological Chemistry | 2009

Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion

Marie-Line Peyot; Claudiane Guay; Martin G. Latour; Julien Lamontagne; Roxane Lussier; Marco Pineda; Neil B. Ruderman; Guenter Haemmerle; Rudolf Zechner; Erik Joly; S. R. Murthy Madiraju; Vincent Poitout; Marc Prentki

Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.


Diabetes | 2008

Cyclical and Alternating Infusions of Glucose and Intralipid in Rats Inhibit Insulin Gene Expression and Pdx-1 Binding in Islets.

Derek K. Hagman; Martin G. Latour; Swarup K. Chakrabarti; Ghislaine Fontés; Julie Amyot; Caroline Tremblay; Meriem Semache; James Lausier; Violet Roskens; Raghavendra G. Mirmira; Thomas L. Jetton; Vincent Poitout

OBJECTIVE—Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo. RESEARCH DESIGN AND METHODS—Wistar rats received alternating 4-h infusions of glucose and Intralipid for a total of 72 h. Control groups received alternating infusions of glucose and saline, saline and Intralipid, or saline only. Insulin and C-peptide secretion were measured under hyperglycemic clamps. Insulin secretion and gene expression were assessed in isolated islets, and β-cell mass was quantified by morphometric analysis. RESULTS—Neither C-peptide secretion nor insulin sensitivity was different among infusion regimens. Insulin content and insulin mRNA levels were lower in islets isolated from rats infused with glucose plus Intralipid. This was associated with reduced Pdx-1 binding to the endogenous insulin promoter, and an increased proportion of Pdx-1 localized in the cytoplasm versus the nucleus. In contrast, MafA mRNA and protein levels and β-cell mass and proliferation were unchanged. CONCLUSIONS—Cyclical and alternating infusions of glucose and Intralipid in normal rats inhibit insulin gene expression without affecting insulin secretion or β-cell mass. We conclude that fatty acid inhibition of insulin gene expression, in the presence of high glucose, is an early functional defect that may contribute to β-cell failure in type 2 diabetes.


Diabetes | 2008

Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism

Patrice Dallaire; Kerstin Bellmann; Mathieu Laplante; Stéphanie Gélinas; Patrice Penfornis; Marie Line Peyot; Martin G. Latour; Julien Lamontagne; Maria E. Trujillo; Philipp E. Scherer; Marc Prentki; Yves Deshaies; André Marette

OBJECTIVE—Synthetic ligands for peroxisome proliferator–activated receptor-γ (PPAR-γ) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS—iNOS−/− and iNOS+/+ were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS—Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS−/− and obese iNOS+/+ mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS−/− mice. PPAR-γ transcriptional activity was increased in adipose tissue of iNOS−/− mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-γ activity. CONCLUSIONS—Our results identify the iNOS/NO pathway as a critical modulator of PPAR-γ activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-γ agonism in an animal model of obesity and insulin resistance.


American Journal of Physiology-endocrinology and Metabolism | 2012

Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat

Viviane Delghingaro-Augusto; Simon Décary; Marie-Line Peyot; Martin G. Latour; Julien Lamontagne; Nicolas Paradis-Isler; Marianne Lacharité-Lemieux; Huguette Akakpo; Olivier Birot; Christopher J. Nolan; Marc Prentki; Raynald Bergeron

Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.

Collaboration


Dive into the Martin G. Latour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Prentki

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Joly

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge