Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin G. Pomper is active.

Publication


Featured researches published by Martin G. Pomper.


Annals of Neurology | 2002

Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging

Susumu Mori; Kim Frederiksen; Peter C.M. van Zijl; Bram Stieltjes; Michael A. Kraut; Meiyappan Solaiyappan; Martin G. Pomper

We applied multislice, whole‐brain diffusion tensor imaging (DTI) to two patients with anaplastic astrocytoma. Data were analyzed using DTI‐based, color‐coded images and a 3‐D tract reconstruction technique for the study of altered white matter anatomy. Each tumor was near two major white matter tracts, namely, the superior longitudinal fasciculus and the corona radiata. Those tracts were identified using the color‐coded maps, and spatial relationships with the tumors were characterized. In one patient the tumor displaced adjacent white matter tracts, whereas in the other it infiltrated the superior longitudinal fasciclus without displacement of white matter. DTI provides new information regarding the detailed relationship between tumor growth and nearby white matter tracts, which may be useful for preoperative planning.


Journal of the American College of Cardiology | 2009

Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery.

John Terrovitis; Riikka Lautamäki; Michael Bonios; James Fox; James Engles; Jianhua Yu; Michelle K. Leppo; Martin G. Pomper; Richard Wahl; Jurgen Seidel; Benjamin M. Tsui; Frank M. Bengel; M. Roselle Abraham; Eduardo Marbán

OBJECTIVES The aim of this study was to quantify acute myocardial retention of cardiac-derived stem cells (CDCs) and evaluate different delivery methods with positron emission tomography (PET). BACKGROUND Success of stem cell transplantation for cardiac regeneration is partially limited by low retention/engraftment of the delivered cells. A clinically applicable method for accurate quantification of cell retention would enable optimization of cell delivery. METHODS The CDCs were derived from syngeneic, male Wistar Kyoto (WK) rats labeled with [(18)F]-fluoro-deoxy-glucose ((18)FDG) and injected intramyocardially into the ischemic region of female WK rats after permanent left coronary artery ligation. The effects of fibrin glue (FG), bradycardia (adenosine), and cardiac arrest were examined. Imaging with (18)FDG PET was performed for quantification of cell retention. Quantitative polymerase chain reaction (PCR) for the male-specific SRY gene was performed to validate the PET results. RESULTS Myocardial retention of cells suspended in phosphate-buffered saline 1 h after delivery was 17.6 +/- 11.5% by PCR and 17.8 +/- 7.3% by PET. When CDCs were injected immediately after induction of cardiac arrest, retention was increased to 75.6 +/- 18.6%. Adenosine slowed the ventricular rate and doubled CDC retention (35.4 +/- 5.3%). A similar increase in CDC retention was observed after epicardial application of FG at the injection site (37.5 +/- 8.2%). The PCR revealed a significant increase in 3-week cell engraftment in the FG animals (22.1 +/- 18.6% and 5.3 +/- 3.1%, for FG and phosphate-buffered saline, respectively). CONCLUSIONS In vivo PET permits accurate measurement of CDC retention early after intramyocardial delivery. Sealing injection sites with FG or lowering ventricular rate by adenosine might be clinically translatable methods for improving stem cell engraftment in a beating heart.


Magnetic Resonance in Medicine | 2008

Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging

Jinyuan Zhou; Jaishri O. Blakeley; Jun Hua; John Laterra; Martin G. Pomper; Peter C. M. van Zijl

Amide proton transfer (APT) imaging is a type of chemical exchange–dependent saturation transfer (CEST) magnetic resonance imaging (MRI) in which amide protons of endogenous mobile proteins and peptides in tissue are detected. Initial studies have shown promising results for distinguishing tumor from surrounding brain in patients, but these data were hampered by magnetic field inhomogeneity and a low signal‐to‐noise ratio (SNR). Here a practical six‐offset APT data acquisition scheme is presented that, together with a separately acquired CEST spectrum, can provide B0‐inhomogeneity corrected human brain APT images of sufficient SNR within a clinically relevant time frame. Data from nine brain tumor patients at 3T shows that APT intensities were significantly higher in the tumor core, as assigned by gadolinium‐enhancement, than in contralateral normal‐appearing white matter (CNAWM) in patients with high‐grade tumors. Conversely, APT intensities in tumor were indistinguishable from CNAWM in patients with low‐grade tumors. In high‐grade tumors, regions of increased APT extended outside of the core into peripheral zones, indicating the potential of this technique for more accurate delineation of the heterogeneous areas of brain cancers. Magn Reson Med 60:842–849, 2008.


Magnetic Resonance in Medicine | 2006

Amide proton transfer imaging of human brain tumors at 3T

Craig K. Jones; Michael J. Schlosser; Peter C.M. van Zijl; Martin G. Pomper; Xavier Golay; Jinyuan Zhou

Amide proton transfer (APT) imaging is a technique in which the nuclear magnetization of water‐exchangeable amide protons of endogenous mobile proteins and peptides in tissue is saturated, resulting in a signal intensity decrease of the free water. In this work, the first human APT data were acquired from 10 patients with brain tumors on a 3T whole‐body clinical scanner and compared with T1‐ (T1w) and T2‐weighted (T2w), fluid‐attenuated inversion recovery (FLAIR), and diffusion images (fractional anisotropy (FA) and apparent diffusion coefficient (ADC)). The APT‐weighted images provided good contrast between tumor and edema. The effect of APT was enhanced by an approximate 4% change in the water signal intensity in tumor regions compared to edema and normal‐appearing white matter (NAWM). These preliminary data from patients with brain tumors show that the APT is a unique contrast that can provide complementary information to standard clinical MRI measures. Magn Reson Med, 2006.


Journal of Controlled Release | 2014

State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines

Chloe Kim; Jea Ho Park; Luisa M. Russell; Kwan Hyi Lee; Martin G. Pomper; Peter C. Searson

The ability to efficiently deliver a drug to a tumor site is dependent on a wide range of physiologically imposed design constraints. Nanotechnology provides the possibility of creating delivery vehicles where these design constraints can be decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing targeting efficiency and efficacy. Here we review the design strategies of the two FDA-approved antibody-drug conjugates (Brentuximab vedotin and Trastuzumab emtansine) and the four FDA-approved nanoparticle-based drug delivery platforms (Doxil, DaunoXome, Marqibo, and Abraxane) in the context of the challenges associated with systemic targeted delivery of a drug to a solid tumor. The lessons learned from these nanomedicines provide an important insight into the key challenges associated with the development of new platforms for systemic delivery of anti-cancer drugs.


Clinical Cancer Research | 2005

Radiolabeled Small-Molecule Ligands for Prostate-Specific Membrane Antigen: In vivo Imaging in Experimental Models of Prostate Cancer

Catherine A. Foss; Ronnie C. Mease; Hong Fan; Yuchuan Wang; Hayden T. Ravert; Robert F. Dannals; Rafal T. Olszewski; Warren D. Heston; Alan P. Kozikowski; Martin G. Pomper

Purpose: Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer, including hormone-refractory and metastatic disease. Our goal in this study was to develop a series of PSMA-based imaging agents for clinical use. Experimental Design: We have synthesized and evaluated the in vivo biodistribution of two radiolabeled urea derivatives that have high affinity for PSMA in severe combined immunodeficient mice harboring MCF-7 (breast, PSMA-negative), PC-3 (prostate, PSMA-negative), and LNCaP (prostate, PSMA-positive) xenografts. Radiopharmaceutical binding selectivity and tumor uptake were also evaluated in vivo using dedicated small animal positron emission tomography, single photon emission computed tomography, and gamma scintigraphic imaging devices. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-[11C]methyl-l-cysteine ([11C]DCMC Ki, 3.1 nmol/L) and N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[125I]iodo-l-tyrosine ([125C]DCIT Ki, 1.5 nmol/L) were synthesized using [11C]CH3I and with [125I]NaI/Iodogen, respectively. Results: At 30 minutes postinjection, [11C]DCMC and [125I]DCIT showed tumor/muscle ratios of 10.8 and 4.7, respectively, with clear delineation of LNCaP-derived tumors on imaging. MCF-7- and PC-3-derived tumors showed significantly less uptake of [11C]DCMC or [125I]DCIT. Conclusion: These results show the feasibility of imaging PSMA-positive prostate cancer using low molecular weight agents.


Journal of Magnetic Resonance Imaging | 2005

Routine clinical brain MRI sequences for use at 3.0 Tesla.

Hanzhang Lu; Lidia M. Nagae-Poetscher; Xavier Golay; Doris Lin; Martin G. Pomper; Peter C.M. van Zijl

To establish image parameters for some routine clinical brain MRI pulse sequences at 3.0 T with the goal of maintaining, as much as possible, the well‐characterized 1.5‐T image contrast characteristics for daily clinical diagnosis, while benefiting from the increased signal to noise at higher field.


Cancer Research | 2009

Preclinical Evaluation of Novel Glutamate-Urea-Lysine Analogues That Target Prostate-Specific Membrane Antigen as Molecular Imaging Pharmaceuticals for Prostate Cancer

Shawn Hillier; Kevin P. Maresca; Frank J. Femia; John Marquis; Catherine A. Foss; Nghi Nguyen; Craig Zimmerman; John A. Barrett; William C. Eckelman; Martin G. Pomper; John Joyal; John W. Babich

Prostate-specific membrane antigen (PSMA) is expressed in normal human prostate epithelium and is highly up-regulated in prostate cancer. We previously reported a series of novel small molecule inhibitors targeting PSMA. Two compounds, MIP-1072, (S)-2-(3-((S)-1-carboxy-5-(4-iodobenzylamino)pentyl)ureido)pentanedioic acid, and MIP-1095, (S)-2-(3-((S)-1carboxy-5-(3-(4-iodophenyl)ureido)pentyl)ureido)pentanedioic acid, were selected for further evaluation. MIP-1072 and MIP-1095 potently inhibited the glutamate carboxypeptidase activity of PSMA (K(i) = 4.6 +/- 1.6 nmol/L and 0.24 +/- 0.14 nmol/L, respectively) and, when radiolabeled with (123)I, exhibited high affinity for PSMA on human prostate cancer LNCaP cells (K(d) = 3.8 +/- 1.3 nmol/L and 0.81 +/- 0.39 nmol/L, respectively). The association of [(123)I]MIP-1072 and [(123)I]MIP-1095 with PSMA was specific; there was no binding to human prostate cancer PC3 cells, which lack PSMA, and binding was abolished by coincubation with a structurally unrelated NAALADase inhibitor, 2-(phosphonomethyl)pentanedioic acid (PMPA). [(123)I]MIP-1072 and [(123)I]MIP-1095 internalized into LNCaP cells at 37 degrees C. Tissue distribution studies in mice showed 17.3 +/- 6.3% (at 1 hour) and 34.3 +/- 12.7% (at 4 hours) injected dose per gram of LNCaP xenograft tissue, for [(123)I]MIP-1072 and [(123)I]MIP-1095, respectively. [(123)I]MIP-1095 exhibited greater tumor uptake but slower washout from blood and nontarget tissues compared with [(123)I]MIP-1072. Specific binding to PSMA in vivo was shown by competition with PMPA in LNCaP xenografts, and the absence of uptake in PC3 xenografts. The uptake of [(123)I]MIP-1072 and [(123)I]MIP-1095 in tumor-bearing mice was corroborated by single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. PSMA-specific radiopharmaceuticals should provide a novel molecular targeting option for the detection and staging of prostate cancer.


Nature Reviews Drug Discovery | 2005

NAAG peptidase inhibitors and their potential for diagnosis and therapy

Jia Zhou; Joseph H. Neale; Martin G. Pomper; Alan P. Kozikowski

Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders.


The Journal of Nuclear Medicine | 2012

Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer

Steve Cho; Kenneth L. Gage; Ronnie C. Mease; Srinivasan Senthamizhchelvan; Daniel P. Holt; Akimosa Jeffrey-Kwanisai; Christopher J. Endres; Robert F. Dannals; George Sgouros; Martin Lodge; Mario A. Eisenberger; Ronald Rodriguez; Michael A. Carducci; Camilo Rojas; Barbara S. Slusher; Alan P. Kozikowski; Martin G. Pomper

Prostate-specific membrane antigen (PSMA) is a type II integral membrane protein expressed on the surface of prostate cancer (PCa) cells, particularly in androgen-independent, advanced, and metastatic disease. Previously, we demonstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-18F-fluorobenzyl-l-cysteine (18F-DCFBC) could image an experimental model of PSMA-positive PCa using PET. Here, we describe the initial clinical experience and radiation dosimetry of 18F-DCFBC in men with metastatic PCa. Methods: Five patients with radiologic evidence of metastatic PCa were studied after the intravenous administration of 370 MBq (10 mCi) of 18F-DCFBC. Serial PET was performed until 2 h after administration. Time–activity curves were generated for selected normal tissues and metastatic foci. Radiation dose estimates were calculated using OLINDA/EXM 1.1. Results: Most vascular organs demonstrated a slow decrease in radioactivity concentration over time consistent with clearance from the blood pool, with primarily urinary radiotracer excretion. Thirty-two PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease. Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases, although further validation is needed. The highest mean absorbed dose per unit administered radioactivity (μGy/MBq) was in the bladder wall (32.4), and the resultant effective dose was 19.9 ± 1.34 μSv/MBq (mean ± SD). Conclusion: Although further studies are needed for validation, our findings demonstrate the potential of 18F-DCFBC as a new positron-emitting imaging agent for the detection of metastatic PCa. This study also provides dose estimates for 18F-DCFBC that are comparable to those of other PET radiopharmaceuticals such as 18F-FDG.

Collaboration


Dive into the Martin G. Pomper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven P. Rowe

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael A. Gorin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuchuan Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Il Minn

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge