Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Gawlitzek is active.

Publication


Featured researches published by Martin Gawlitzek.


Biotechnology and Bioengineering | 2000

Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms.

Martin Gawlitzek; Thomas Ryll; Jim Lofgren; Mary B. Sliwkowski

The effect of ammonium on the glycosylation pattern of the recombinant immunoadhesin tumor necrosis factor-IgG (TNFR-IgG) produced by Chinese hamster ovary cells is elucidated in this study. TNFR-IgG is a chimeric IgG fusion protein bearing one N-linked glycosylation site in the Fc region and three complex-type N-glycans in the TNF-receptor portion of each monomer. The ammonium concentration of batch suspension cultures was adjusted with glutamine and/or NH(4)Cl. The amount of galactose (Gal) and N-acetylneuraminic acid (NANA) residues on TNFR-IgG correlated in a dose-dependent manner with the ammonium concentration under which the N-linked oligosaccharides were synthesized. As ammonium increased from 1 to 15 mM, a concomitant decrease of up to 40% was observed in terminal galactosylation and sialylation of the molecule. Cell culture supernatants contained measurable beta-galactosidase and sialidase activity, which increased throughout the culture. The beta-galactosidase, but not the sialidase, level was proportional to the ammonium concentration. No loss of N-glycans was observed in incubation studies using beta-galactosidase and sialidase containing cell culture supernatants, suggesting that the ammonium effect was biosynthetic and not degradative. Several biosynthetic mechanisms were investigated. Ammonium (a weak base) is known to affect the pH of acidic intracellular compartments (e.g., trans-Golgi) as well as intracellular nucleotide sugar pools (increases UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine). Ammonium might also affect the expression rates of beta1, 4-galactosyltransferase (beta1,4-GT) and alpha2,3-sialyltransferase (alpha2,3-ST). To separate these mechanisms, experiments were designed using chloroquine (changes intracellular pH) and glucosamine (increases UDP-GNAc pool [sum of UDP-GlcNAc and UDP-GalNAc]). The ammonium effect on TNFR-IgG oligosaccharide structures could be mimicked only by chloroquine, another weak base. No differences in N-glycosylation were found in the product synthesized in the presence of glucosamine. No differences in beta1, 4-galactosyltransferase (beta1,4-GT) and alpha2,3-sialyltransferase (alpha2,3-ST) messenger RNA (mRNA) and enzyme levels were observed in cells cultivated in the presence or absence of 13 mM NH(4)Cl. pH titration of endogenous CHO alpha2,3-ST and beta-1,4-GT revealed a sharp optimum at pH 6.5, the reported trans-Golgi pH. Thus, at pH 7.0 to 7.2, a likely trans-Golgi pH range in the presence of 10 to 15 mM ammonium, activities for both enzymes are reduced to 50% to 60%. Consequently, ammonium seems to alter the carbohydrate biosynthesis of TNFR-IgG by a pH-mediated effect on glycosyltransferase activity.


Biotechnology and Bioengineering | 2000

Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator

Dana C. Andersen; Tiffany M. Bridges; Martin Gawlitzek; Cynthia A. Hoy

Human tissue-type plasminogen activator (t-PA) contains a variably occupied glycosylation site at Asn-184 in naturally produced t-PA and in t-PA produced in recombinant Chinese hamster ovary (CHO) cells. The presence of an oligosaccharide at this site has previously been shown to reduce specific activity and fibrin binding. In this report, the site occupancy of t-PA is shown to increase gradually over the course of batch and fed-batch CHO cultures. Additional cell culture factors, including butyrate and temperature, are also shown to influence the degree of glycosylation. In each of these cases, conditions with decreased growth rate correlate with increased site occupancy. Investigations using quinidine and thymidine to manipulate the cell cycle distribution of cultures further support this correlation between site occupancy and growth state. Comparison of the cell cycle distribution across the range of cell culture factors investigated shows a consistent relationship between site occupancy and the fraction of cells in the G(0)/G(1) phase of the cell cycle. These results support a correlation between growth state and site occupancy, which fundamentally differs from site occupancy trends previously observed and illustrates the importance of the growth profile of CHO cultures in producing consistently glycosylated recombinant glycoproteins.


Biotechnology and Bioengineering | 1998

Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells

Martin Gawlitzek; Ulrich Valley; Roland Wagner

The effect of different ammonium concentrations and glucosamine on baby hamster kidney (BHK)-21 cell cultures grown in continuously perfused double membrane bioreactors was investigated with respect to the final carbohydrate structures of a secretory recombinant glycoprotein. The human interleukin-2 (IL-2) mutant glycoprotein variant IL-Mu6, which bears a novel N-glycosylation site (created by a single amino acid exchange of Gln100 to Asn), was produced under different defined protein-free culture conditions in the presence or absence of either glutamine, NH4Cl, or glucosamine. Recombinant glycoprotein products were purified and characterized by amino acid sequencing and carbohydrate structural analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry, high-pH anion-exchange chromatography with pulsed amperometric detection, and methylation analysis. In the absence of glutamine, cells secreted glycoprotein forms with preponderantly biantennary, proximal fucosylated carbohydrate chains (85%) with a higher NeuAc content (58%). Under standard conditions in the presence of 7.5 mM glutamine, complex-type N-glycans were found to be mainly biantennary (68%) and triantennary structures (33%) with about 50% containing proximal alpha1-6-linked fucose; 37% of the antenna were found to be substituted with terminal alpha2-3-linked N-acetylneuraminic acid. In the presence of 15 mM exogenously added NH4Cl, a significant and reproducible increase in tri- and tetraantennary oligosaccharides (45% of total) was detected in the secretion product. In glutamin-free cultures supplemented with glucosamine, an intermediate amount of high antennary glycans was detected. The increase in complexity of N-linked oligosaccharides is considered to be brought about by the increased levels of intracellular uridine diphosphate-GlcNAc/GalNAc. These nucleotide sugar pools were found to be significantly elevated in the presence of high NH3/NH4+ and glucosamine concentrations.


Journal of Biotechnology | 1995

Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions

Martin Gawlitzek; Ulrich Valley; Manfred Nimtz; Roland Wagner; Harald S. Conradt

The N-glycosylation patterns of a genetically engineered human interleukin-2 variant glycoprotein (IL-Mu6), produced by BHK-21 cells from long-term suspension and microcarrier cultures in the presence and absence of fetal calf serum were compared. IL-Mu6 was used as a model protein in studying the effect of different controlled cell culture conditions on the expression of N-glycans in recombinant glycoproteins. IL-Mu6 contains a single amino acid substitution (Glu100<==>Asn) generating a potential N-glycosylation recognition site (Asn100-Xxx-Thr/Ser) in addition to the natural O-glycosylation at position Thr3. Parallel cell cultivations were carried out in two continuously perfused 2.5-liter stirred bioreactors under defined culture conditions. Major differences were found in the glycoprotein products obtained during these different cultivation conditions. Serum-free cultures resulted in a higher level of terminal sialylation and proximal alpha 1-6 fucosylation. The ratio of O- to N-glycans as well as the amount of nonglycosylated product and the antennarity of N-linked carbohydrates in the model protein exhibited major differences depending on the presence or absence of serum, the condition of growth and the cultivation procedure.


Biotechnology and Bioengineering | 2009

Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells

Martin Gawlitzek; Michael Estacio; Tobias Fürch; Robert Kiss

The effect of different cell culture conditions on N‐glycosylation site‐occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t‐PA) and a recombinant enzyme (glycoprotein 2—GP2). Both molecules contain a N‐glycosylation site that is variably occupied. Different environmental factors that affect the site‐occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t‐PA (type I t‐PA) by approximately 2.5–4%. Decreasing the cultivation temperature from 37 to 33°C or 31°C gradually increased site‐occupancy of t‐PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site‐occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site‐occupancy of t‐PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N‐glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site‐occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N‐glycan site‐occupancy within a specific range. An increase in culture pH correlated with a decrease in site‐occupancy. Similarly, delaying the timing for butyrate addition also decreased site‐occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N‐glycan site‐occupancy, within a specific range when applied appropriately. Biotechnol. Bioeng. 2009;103: 1164–1175.


Biotechnology Progress | 2013

Effect of cell culture medium components on color of formulated monoclonal antibody drug substance.

Natarajan Vijayasankaran; Sharat Varma; Yi Yang; Melissa Mun; Silvana R Arevalo; Martin Gawlitzek; Trevor E. Swartz; Amy Lim; Feng Li; Boyan Zhang; Steve Meier; Robert Kiss

As the industry moves toward subcutaneous delivery as a preferred route of drug administration, high drug substance concentrations are becoming the norm for monoclonal antibodies. At such high concentrations, the drug substance may display a more intense color than at the historically lower concentrations. The effect of process conditions and/or changes on color is more readily observed in the higher color, high concentration formulations. Since color is a product quality attribute that needs to be controlled, it is useful to study the impact of process conditions and/or modifications on color. This manuscript summarizes cell culture experiments and reports on findings regarding the effect of various media components that contribute to drug substance color for a specific monoclonal antibody. In this work, lower drug substance color was achieved via optimization of the cell culture medium. Specifically, lowering the concentrations of B‐vitamins in the cell culture medium has the effect of reducing color intensity by as much as 25%. In addition, decreasing concentration of iron was also directly correlated color intensity decrease of as much as 37%. It was also shown that the color of the drug substance directly correlates with increased acidic variants, especially when increased iron levels cause increased color. Potential mechanisms that could lead to antibody coloration are briefly discussed.


Biotechnology Progress | 2015

Effects of copper on CHO cells: cellular requirements and product quality considerations.

Inn H. Yuk; Stephen Russell; Yun Tang; Wei-Ting Hsu; Jacob B. Mauger; Rigzen P. S. Aulakh; Jun Luo; Martin Gawlitzek; John C. Joly

Recent reports highlight the impact of copper on lactate metabolism: CHO cell cultures with higher initial copper levels shift to net lactate consumption and yield lower final lactate and higher titers. These studies investigated the effects of copper on metabolite and transcript profiles, but did not measure in detail the dependences of cell culture performance and product quality on copper concentrations. To more thoroughly map these dependences, we explored the effects of various copper treatments on four recombinant CHO cell lines. In the first cell line, when extracellular copper remained above the limit of detection (LOD), cultures shifted to net lactate consumption and yielded comparable performances irrespective of the differences in copper levels; when extracellular copper dropped below LOD (∼13 nM), cultures failed to shift to net lactate consumption, and yielded significantly lower product titers. Across the four cell lines, the ability to grow and consume lactate seemed to depend on the presence of a minimum level of copper, beyond which there were no further gains in culture performance. Although this minimum cellular copper requirement could not be directly quantified, we estimated its probable range for the first cell line by applying several assumptions. Even when different copper concentrations did not affect cell culture performance, they affected product quality profiles: higher initial copper concentrations increased the basic variants in the recombinant IgG1 products. Therefore, in optimizing chemically defined media, it is important to select a copper concentration that is adequate and achieves desired product quality attributes.


Animal Cell TechnologyProducts of Today, Prospects for Tomorrow | 1994

CHANGES IN THE GLYCOSYLATION PATTERN OF RECOMBINANT PROTEINS EFFECTED BY DEFINED CULTURE CONDITIONS OF BHK-21 CELLS

Martin Gawlitzek; Roland Wagner; Harald S. Conradt; Corinne Villers; André Verbert

ABSTRACT A genetically engineered human IL-2 variant protein (IL-2-Mu6) expressed by BHK-21 cells was used as a model protein for studying the effect of different controlled cell culture conditions on the O- and N-glycosylation of recombinant glycoproteins. IL-2-Mu6 contains a single amino acid substitution (Glu100↔Asn) thus creating a potential N-glycosylation recognition site (Asn100-Xxx-Thr/Ser)[1, 2]. Cultivations were carried out in perfused 2-liter double membrane bioreactors. The products of cells grown in suspension and on microcarriers, both in the presence and absence of fetal calf serum, were compared [3]. Glycoprotein products obtained under different cultivation conditions showed differences in proximal α1–6 fucosylation, NeuAc content as well as in the antennarity of the N-glycans.


BMC Proceedings | 2013

Development and implementation of a global Roche cell culture platform for production of monoclonal antibodies

Thomas Tröbs; Sven Markert; Ulrike Caudill; Oliver Popp; Martin Gawlitzek; Masaru Shiratori; Chris Caffalette; Robert Shawley; Steve Meier; Abby Pynn; Wendy Hsu; Andy A. Lin

New chemically defined platform media (basal and feed) were developed by leveraging data and knowledge from the two Genentech and Roche legacy platform processes, and through a series of experiments including high-throughput systems for cell culture, shake flasks, 2L bioreactors and pilot-scale bioreactors. An average increase in final titer of 30% was achieved compared to the two legacy platforms. The final process resulted in product quality attributes (glycans, charge variants, size) that were comparable to historical data. No new variants were detected. The final and fully harmonized platform process is specified and implemented.


Biotechnology Journal | 2018

High Intracellular Seed Train BiP Levels Correlate With Poor Production Culture Performance in CHO Cells

Meg Tung; Danming Tang; Szu-Han Wang; Dejin Zhan; Karen Kiplinger; Shu Pan; Yifeng Jing; Amy Shen; Patrick Ahyow; Brad Snedecor; Martin Gawlitzek; Shahram Misaghi

Consistent cell culture performance is a prerequisite to ensure product quality consistency and achieve productivity goals for the manufacture of recombinant protein therapeutics, including monoclonal antibodies. Here a peculiar observation is reported where high levels of intracellular BiP in seed train cultures are consistently predictive of poor cell culture performance in the subsequent inoculum and production cultures for a monoclonal antibody produced in CHO cells. This investigation suggests that in this cell line the high intracellular BiP levels in the seed train are triggered by a slightly lower culture pH, which interferes with proper antibody folding and secretion. While the seed train culture does not display any obvious signs of the problem at slightly lower culture pH, inoculum trains, and production cultures sourced from these low pH seed trains display significantly lower cell growth and cell size. High intracellular BiP levels may interfere with UPR signaling, thereby hampering a proper and timely UPR response in the production media. Studies of other problematic cell lines have shown a similar correlation between intracellular BiP accumulation and poor production performance. The authors believe intracellular BiP levels in seed train should hence be low in order to increase the success rate in production.

Collaboration


Dive into the Martin Gawlitzek's collaboration.

Researchain Logo
Decentralizing Knowledge