Martin Götte
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Götte.
Journal of Clinical Investigation | 2005
Liliana Schaefer; Andrea Babelova; Eva Kiss; Heinz Hausser; Martina Baliova; Miroslava Krzyzankova; Gunther Marsche; Marian F. Young; Daniel Mihalik; Martin Götte; Ernst Malle; Roland M. Schaefer; Hermann Josef Gröne
Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of TNF-alpha and macrophage inflammatory protein-2 (MIP-2). In agreement, the stimulatory effects of biglycan are significantly reduced in TLR4-mutant (TLR4-M), TLR2-/-, and myeloid differentiation factor 88-/- (MyD88-/-) macrophages and completely abolished in TLR2-/-/TLR4-M macrophages. Biglycan-null mice have a considerable survival benefit in LPS- or zymosan-induced sepsis due to lower levels of circulating TNF-alpha and reduced infiltration of mononuclear cells in the lung, which cause less end-organ damage. Importantly, when stimulated by LPS-induced proinflammatory factors, macrophages themselves are able to synthesize biglycan. Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2. Our results provide evidence for what is, to our knowledge, a novel role of the matrix component biglycan as a signaling molecule and a crucial proinflammatory factor. These findings are potentially relevant for the development of new strategies in the treatment of sepsis.
The FASEB Journal | 2003
Martin Götte
Cell surface heparan sulfate (HS) influences a multitude of molecules, cell types, and processes relevant to inflammation. HS binds to cell surface and matrix proteins, cytokines, and chemokines. These interactions modulate inflammatory cell maturation and activation, leukocyte rolling, and tight adhesion to endothelium, as well as extravasation and chemotaxis. The syndecan family of transmembrane proteoglycans is the major source of cell surface HS on all cell types. Recent in vitro and in vivo data suggest the involvement of syndecans in the modulation of leukocyte–endothelial interactions and extravasation, the formation of chemokine and kininogen gradients, participation in chemokine and growth factor signaling, as well as repair processes. Thus, the complex role of HS in inflammation is reflected by multiple functions of its physiological carriers, the syndecans. Individual and common functions of the four mammalian syndecan family members can be distinguished. Recently generated transgenic and knockout mouse models will facilitate analysis of the individual processes that each syndecan is involved in.
Trends in Biochemical Sciences | 1997
Thomas Lazar; Martin Götte; Dieter Gallwitz
In eukaryotic cells, protein transport through the secretory and endocytic pathways is mediated by vesicular intermediates. Individual transport steps are regulated by Ras-like guanine nucleotide-binding proteins, termed Ypt in yeast or Rab in mammals. The complete sequencing of the Saccharomyces cerevisiae genome has revealed the total number of Ypt GTPases in this organism. There is some redundancy among the 11 Ypt proteins, and only those involved in the biosynthetic pathway are essential for cell viability.
Journal of Biological Chemistry | 2004
Johan Ledin; William D. Staatz; Jin-Ping Li; Martin Götte; Scott B. Selleck; Lena Kjellén; Dorothe Spillmann
Using a high throughput heparan sulfate (HS) isolation and characterization protocol, we have analyzed HS structure in several tissues from mice/mouse embryos deficient in HS biosynthesis enzymes (N-deacetylase/N-sulfotransferase (NDST)-1, NDST-2, and C5-epimerase, respectively) and in mice lacking syndecan-1. The results have given us new information regarding HS biosynthesis with implications on the role of HS in embryonic development. Our main conclusions are as follows. 1) The HS content, disaccharide composition, and the overall degree of N- and O-sulfation as well as domain organization are characteristic for each individual mouse tissue. 2) Removal of a key biosynthesis enzyme (NDST-1 or C5-epimerase) results in similar structural alterations in all of the tissues analyzed. 3) Essentially no variation in HS tissue structure is detected when individuals of the same genotype are compared. 4) NDST-2, although generally expressed, does not contribute significantly to tissue-specific HS structures. 5) No change in HS structure could be detected in syndecan-1-deficient mice.
Molecular Cancer Therapeutics | 2006
George Wai-Cheong Yip; Martin Smollich; Martin Götte
Glycosaminoglycans are unbranched polysaccharides composed of repeating units of alternating uronic acids and amino sugars. Most glycosaminoglycans are covalently attached to core proteins to form proteoglycans. Posttranslational modifications result in specific motifs that bind to a large variety of ligands, thus regulating growth factor signaling, cellular behavior, inflammation, angiogenesis, and the proteolytic environment. Dysregulated expression of glycosaminoglycans is present in cancer and reported to correlate with clinical prognosis in several malignant neoplasms. Recent knowledge on the biological roles of these molecules in cancer biology, tumor angiogenesis, and metastasis has promoted the development of drugs targeting them. Pharmaceutical approaches include the use of chemically modified heparins and glycosaminoglycans with defined structures, combination of inhibitors of glycosaminoglycan biosynthesis and polyamine depletion, and biologically active glycosaminoglycan-binding peptides. In addition, glycosaminoglycans are used as tumor-specific delivery and targeting vehicles for toxins and chemotherapeutics. Encouraging results in animal studies and clinical trials show the clinical relevance of glycosaminoglycan-based drugs and the use of glycosaminoglycans as therapeutic targets. [Mol Cancer Ther 2006;5(9):2139–48]
The Journal of Pathology | 2008
Martin Götte; M Wolf; A Staebler; Olaf Buchweitz; Reinhard Kelsch; Andreas N. Schüring; Ludwig Kiesel
Adult stem cells are thought to be responsible for the high regenerative capacity of the human endometrium, and have been implicated in the pathology of endometriosis and endometrial carcinoma. The RNA‐binding protein Musashi‐1 is associated with maintenance and asymmetric cell division of neural and epithelial progenitor cells. We investigated expression and localization of Musashi‐1 in endometrial, endometriotic and endometrial carcinoma tissue specimens of 46 patients. qPCR revealed significantly increased Musashi‐1 mRNA expression in the endometrium compared to the myometrium. Musashi‐1 protein expression presented as nuclear or cytoplasmic immunohistochemical staining of single cells in endometrial glands, and of single cells and cell groups in the endometrial stroma. Immunofluorescence microscopy revealed colocalization of Musashi‐1 with its molecular target Notch‐1 and telomerase. In proliferative endometrium, the proportion of Musashi‐1‐positive cells in the basalis layer was significantly increased 1.5‐fold in the stroma, and three‐fold in endometrial glands compared to the functionalis. The number of Musashi‐1 expressing cell groups was significantly increased (four‐fold) in proliferative compared to secretory endometrium. Musashi‐1 expressing stromal cell and cell group numbers were significantly increased (five‐fold) in both endometriotic and endometrial carcinoma tissue compared to secretory endometrium. A weak to moderate, diffuse cytoplasmic glandular staining was observed in 50% of the endometriosis cases and in 75% of the endometrioid carcinomas compared to complete absence in normal endometrial samples. Our results emphasize the role of Musashi‐1‐expressing endometrial progenitor cells in proliferating endometrium, endometriosis and endometrioid uterine carcinoma, and support the concept of a stem cell origin of endometriosis and endometrial carcinoma. Copyright
Oncogene | 2010
Martin Götte; C Mohr; C-Y Koo; Christian Stock; A-K Vaske; Manuela Viola; Sherif A. Ibrahim; Swetha S. D. Peddibhotla; Y H-F Teng; J-Y Low; Klaus Ebnet; Ludwig Kiesel; George Wai-Cheong Yip
Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell–cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3′UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.
Carcinogenesis | 2009
Viktoriya Nikolova; Chuay-Yeng Koo; Sherif A. Ibrahim; Zihua Wang; Dorothe Spillmann; Rita Dreier; Reinhard Kelsch; Jeanett Fischgräbe; Martin Smollich; Laura Rossi; Walter Sibrowski; Pia Wülfing; Ludwig Kiesel; George Wai-Cheong Yip; Martin Götte
The heparan sulfate proteoglycan syndecan-1 (Sdc1) modulates cell proliferation, adhesion, migration and angiogenesis. Proteinase-mediated shedding converts Sdc1 from a membrane-bound coreceptor into a soluble effector capable of binding the same ligands. In breast carcinomas, Sdc1 overexpression correlates with poor prognosis and an aggressive phenotype. To distinguish between the roles of membrane-bound and shed forms of Sdc1 in breast cancer progression, human MCF-7 breast cancer cells were stably transfected with plasmids overexpressing wild-type (WT), constitutively shed and uncleavable forms of Sdc1. Overexpression of WT Sdc1 increased cell proliferation, whereas overexpression of constitutively shed Sdc1 decreased proliferation. Fibroblast growth factor-2-mediated mitogen-activated protein kinase signaling was reduced following small-interfering RNA (siRNA)-mediated knockdown of Sdc1 expression. Constitutively, membrane-bound Sdc1 inhibited invasiveness, whereas soluble Sdc1 promoted invasion of MCF-7 cells into matrigel matrices. The latter effect was reversed by the matrix metalloproteinase inhibitors N-isobutyl-N-(4-methoxyphenylsufonyl) glycyl hydroxamic acid and tissue inhibitor of metalloproteinase (TIMP)-1. Affymetrix microarray analysis identified TIMP-1, Furin and urokinase-type plasminogen activator receptor as genes differentially regulated in soluble Sdc1-overexpressing cells. Endogenous TIMP-1 expression was reduced in cells overexpressing soluble Sdc1 and increased in those overexpressing the constitutively membrane-bound Sdc1. Moreover, E-cadherin protein expression was downregulated in cells overexpressing soluble Sdc1. Our results suggest that the soluble and membrane-bound forms of Sdc1 play different roles at different stages of breast cancer progression. Proteolytic conversion of Sdc1 from a membrane-bound into a soluble molecule marks a switch from a proliferative to an invasive phenotype, with implications for breast cancer diagnostics and potential glycosaminoglycan-based therapies.
British Journal of Cancer | 2006
Isabel Radke; Martin Götte; Christian Kersting; B Mattsson; Ludwig Kiesel; Pia Wülfing
The aim of this study was to investigate the expression of the protein tyrosine phosphatases (PTP) PRL-1, PRL-2, and PRL-3 in human breast cancer and to evaluate its clinical and prognostic significance. PRL-PTP mRNA expression was examined in malignant (n=7) and nonmalignant (n=7) cryoconserved breast tissue samples as well as in eight breast cancer cell lines by RT–PCR. Furthermore, protein expression of PRL-3 was analysed semiquantitatively by immunohistochemistry in ductal breast carcinoma in situ (n=135) and invasive breast cancer (n=147) by use of tissue microarray technology (TMA). In 24 lymph node-positive patients we selected the corresponding lymph node metastases for analysis of PRL-3 expression, and a validation set (n=99) of invasive breast cancer samples was examined. Staining results were correlated with clinicopathological parameters and long-term follow-up. PRL-3 mRNA expression was significantly higher in malignant compared to benign breast tissue. For PRL-1 and PRL-2 expression no significant differences were observed. Staining of TMAs showed PRL-3 expression in 85.9% ductal carcinoma in situ and 75.5% invasive breast carcinomas. Analysis of survival parameters revealed a shorter disease-free survival (DFS) in patients with PRL-3-positive carcinomas, and in particular a significantly shorter DFS in nodal-positive patients with PRL-3 overexpressing tumours as compared to PRL-3-negative breast carcinomas (66±7 months (95% CI, 52–80) vs 97±9 months (95% CI, 79–115); P=0.032). Moreover, we found a more frequent expression of PRL-3 in lymph node metastases as compared to the primary tumours (91.7 vs 66.7%; P=0.033). Our results suggest that PRL-3 might serve as a novel prognostic factor in breast cancer, which may help to predict an adverse disease outcome.
Trends in Cell Biology | 1998
Martin Götte; Gabriele Fischer von Mollard
Eukaryotic cells contain membrane-bound compartments that are connected by trafficking of vesicular intermediates. To maintain compartmental organization, proper targeting of transport vesicles is achieved by specific evolutionarily conserved transmembrane proteins that reside on vesicles and target membranes. According to the original SNARE hypothesis, the formation of a complex of an NEM-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs) and membrane-bound SNAP receptor proteins (SNAREs) ensures docking specificity and leads to membrane fusion driven by the ATPase activity of NSF. Recent results have challenged some aspects of this hypothesis and led to a reassessment of models of SNARE interactions and the events leading to vesicle docking and fusion.