Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Göttlich is active.

Publication


Featured researches published by Martin Göttlich.


PLOS ONE | 2013

Altered Resting State Brain Networks in Parkinson’s Disease

Martin Göttlich; Thomas F. Münte; Marcus Heldmann; Meike Kasten; Johann Hagenah; Ulrike M. Krämer

Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.


Human Brain Mapping | 2014

Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder

Martin Göttlich; Ulrike M. Krämer; Andreas Kordon; Fritz Hohagen; Bartosz Zurowski

Obsessive‐compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto‐striato‐thalamo‐cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting‐state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto‐parietal regions relevant for (re)‐appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty. Hum Brain Mapp 35:5617–5632, 2014.


Cerebral Cortex | 2015

Orbitofrontal Cortex Reactivity to Angry Facial Expression in a Social Interaction Correlates with Aggressive Behavior

Frederike Beyer; Thomas F. Münte; Martin Göttlich; Ulrike M. Krämer

Altered neural processing of social signals such as angry facial expressions has been associated with increased aggressive behavior, but evidence for this relationship in healthy persons using ecologically valid experimental designs is lacking. We presented socially relevant videos of facial expressions in a functional magnetic resonance imaging (fMRI) version of the well-established Taylor Aggression Paradigm and investigated 41 healthy male participants, of whom 32 were included in the analysis. In each round of this competitive reaction time task, participants observed their opponent while he selected a punishment level for him, bearing either a neutral or angry facial expression. Afterward, participants in turn selected a punishment level for their opponent. Across participants, reactivity of the medial orbitofrontal cortex (OFC) to angry facial expressions was negatively related to aggressive behavior. Within participants and across trials, activity in the anterior cingulate cortex (ACC) was positively related to aggressive behavior specifically in response to angry expressions. Moreover, we found an effect of angry expressions on neural activity patterns during later stages of the task, demonstrating that the effect of angry expressions on neural reactivity is more than just a short-lived, stimulus-driven response. Our results underscore the importance of OFC and ACC for the shaping of socially adaptive responses to provocation.


Biological Psychology | 2015

Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder

Martin Göttlich; Ulrike M. Krämer; Andreas Kordon; Fritz Hohagen; Bartosz Zurowski

BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric disorder which is characterized by recurrent intrusive thoughts (obsessions) and ritualized, repetitive behaviors or mental acts (compulsions). The gold standard for the treatment of OCD is cognitive behavioral therapy (CBT) with exposure and response prevention. This is the first study exploring the predictive value of resting-state functional connectivity for the outcome of CBT. METHODS We assessed whole-brain resting-state functional connectivity in a group of 17 un-medicated OCD inpatients prior to CBT compared to 19 healthy controls using functional magnetic resonance imaging. The graph theoretical metric degree centrality served as indicator for altered voxel-wise whole-brain functional connectivity. The relative change in the Yale-Brown Obsessive Compulsive Scale (YBOCS) score was used to evaluate treatment outcome. RESULTS The degree centrality of the right basolateral nuclei group of the amygdala was positively correlated with the response to subsequent CBT. OCD patients showed a lower degree centrality of the superficial amygdala (bilateral). CONCLUSIONS Our results suggest that two different sub-regions of the amygdala and their respective neural networks are affected in OCD: the superficial amygdala and networks related to evaluation of reinforcers and risk anticipation and the basolateral amygdala which is implicated in fear processing. The diminished CBT response in patients showing a lower degree centrality of the basolateral amygdala reflects a deficient fear circuit in these patients which may impact fear extinction as a core mechanism of exposure-based CBT.


Human Brain Mapping | 2016

Hippocampal gray matter volume in bilateral vestibular failure.

Martin Göttlich; Nico M. Jandl; Andreas Sprenger; Jann F. Wojak; Thomas F. Münte; Ulrike M. Krämer; C. Helmchen

Bilateral vestibular failure (BVF) is a severe chronic disorder of the labyrinth or the eighth cranial nerve characterized by unsteadiness of gait and disabling oscillopsia during head movements. According to animal data, vestibular input to the hippocampus is proposed to contribute to spatial memory and spatial navigation. Except for one seminal study showing the association of impaired spatial navigation and hippocampal atrophy, patient data in BVF are lacking. Therefore, we performed a voxel‐wise comparison of the hippocampal gray matter volume (GMV) in a clinically representative sample of 27 patients with incomplete BVF and 29 age‐ and gender‐matched healthy controls to test the hypothesis of hippocampal atrophy in BVF. Although the two groups did not generally differ in their hippocampal GMV, a reduction of GMV in the bilateral hippocampal CA3 region was significantly correlated with increased vestibulopathy‐related clinical impairment. We propose that GMV reduction in the hippocampus of BVF patients is related to the severity of vestibular‐induced disability which is in line with combined hippocampal atrophy and disorders of spatial navigation in complete vestibular deafferentation due to bilateral nerve section. Clinically, however, the most frequent etiologies of BVF cause incomplete lesions. Accordingly, hippocampus atrophy and deficits in spatial navigation occur possibly less frequently than previously suspected. Hum Brain Mapp 37:1998–2006, 2016.


Frontiers in Systems Neuroscience | 2015

BASCO: a toolbox for task-related functional connectivity

Martin Göttlich; Frederike Beyer; Ulrike M. Krämer

BASCO (BetA Series COrrelation) is a user-friendly MATLAB toolbox with a graphical user interface (GUI) which allows investigating functional connectivity in event-related functional magnetic resonance imaging (fMRI) data. Connectivity analyses extend and compliment univariate activation analyses since the actual interaction between brain regions involved in a task can be explored. BASCO supports seed-based functional connectivity as well as brain network analyses. Although there are a multitude of advanced toolboxes for investigating resting-state functional connectivity, BASCO is the first toolbox for evaluating task-related whole-brain functional connectivity employing a large number of network nodes. Thus, BASCO allows investigating task-specific rather than resting-state networks. Here, we summarize the main features of the toolbox and describe the methods and algorithms.


Psychoneuroendocrinology | 2015

Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: A resting state fMRI study

Martin Göttlich; Marcus Heldmann; Anna Göbel; Anna-Luise Dirk; Georg Brabant; Thomas F. Münte

Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures.


European thyroid journal | 2015

Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

Anna Göbel; Marcus Heldmann; Martin Göttlich; Anna-Luise Dirk; Georg Brabant; Thomas F. Münte

Background: Hyper- as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives: This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods: High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results: Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions: Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.


PLOS ONE | 2016

Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task.

Anna Göbel; Marcus Heldmann; Martin Göttlich; Anna-Luise Dirk; Georg Brabant; Thomas F. Münte

Aims Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. Methods Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. Results In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. Conclusions It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks.


NeuroImage | 2017

Viewing socio-affective stimuli increases connectivity within an extended default mode network

Martin Göttlich; Zheng Ye; Antoni Rodríguez-Fornells; Thomas F. Münte; Ulrike M. Krämer

Abstract Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta‐series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio‐affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. HighlightsViewing socio‐emotional stimuli increased connectivity within an extended DMN.Posterior STG/TPJ regions were provincial hubs within the eDMN.PCC and vlPFC were connector hubs between eDMN and cognitive control network.

Collaboration


Dive into the Martin Göttlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge