Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Goulet is active.

Publication


Featured researches published by Martin Goulet.


Molecular Brain Research | 1997

Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy.

Marc Morissette; Martin Goulet; Jean-Jacques Soghomonian; Pierre J. Blanchet; Frédéric Calon; Paul J. Bédard; Thérèse Di Paolo

The effect of chronic treatment with the D2 dopamine agonist U91356A or L-DOPA therapy on the regulation of preproenkephalin (PPE) mRNA was investigated in the caudate-putamen of previously drug-naive cynomolgus monkeys Macaca fascicularis rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In MPTP monkeys, pulsatile treatment with either L-DOPA or U91356A relieved parkinsonian symptoms but caused progressive sensitization to treatment and, as expected, induced choreic dyskinesias. In contrast, U91356A given in a continuous mode led to partial behavioral tolerance without appearance of dyskinesias. Using in situ hybridization histochemistry, lesioning was shown to produce elevation of PPE mRNA levels in the lateral and medial parts of the putamen and in the lateral part of the caudate nucleus compared to control animals at the three rostrocaudal regions analyzed. In general, no change of PPE mRNA levels were observed in the medial caudate after MPTP lesioning with or without L-DOPA or U91356A treatments in the three rostrocaudal regions measured except for an increase in the caudal part of L-DOPA-treated MPTP monkeys. In the putamen and lateral caudate nucleus, elevated PPE mRNA expression by MPTP generally was not corrected (or only partially corrected) by chronic L-DOPA treatment except for the rostral medial putamen where correction to control values was observed. In general, pulsatile administration of U91356A partially corrected the lesion-induced elevation of PPE mRNA levels in the putamen and lateral caudate nucleus whereas the correction was more pronounced and widespread when MPTP monkeys received the continuous administration of this drug. These results indicate that the mode of administration of a D2 dopamine receptor agonist, such as U91356A, although at a roughly equivalent dosage influences the extent of inhibition of the expression of PPE in the denervated striatum of monkeys. In addition, the general lack of correction of the MPTP-induced increase of PPE mRNA in the striatum of L-DOPA-treated monkeys compared to the decreases observed with the D2 agonist treatments suggest that the D1 agonist component of L-DOPA therapy opposes the D2 agonist activity. Hence, D1 receptor agonist activity would stimulate PPE mRNA expression whereas D2 receptor agonists inhibit the expression of this peptide. Increases in PPE expression in the striatum may be implicated in the induction of dyskinesias since both groups of treated MPTP monkeys displaying dyskinesias had elevated striatal PPE mRNA levels whereas the MPTP monkeys with the lowest striatal PPE mRNA levels developed tolerance without dyskinesias.


Journal of Neurochemistry | 1999

Differential Regulation of Striatal Preproenkephalin and Preprotachykinin mRNA Levels in MPTP-Lesioned Monkeys Chronically Treated with Dopamine D1 or D2 Receptor Agonists

Marc Morissette; Richard Grondin; Martin Goulet; Paul J. Bédard; Thérèse Di Paolo

Abstract : Studies in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐lesioned monkeys and in parkinsonian patients show elevated preproenkephalin (PPE) mRNA levels, unaltered by chronic l‐DOPA therapy, whereas preprotachykinin (PPT) mRNA levels are decreased by the lesion and corrected by l‐DOPA. The relative contributions of the dopamine D1 and D2 receptors for PPE mRNA regulation were investigated in the present study and compared with those for PPT mRNA. In situ hybridization was used to measure peptide mRNA levels in the striatum of MPTP cynomolgus monkeys after chronic 1‐month treatment with the D1 agonist SKF‐82958, administered subcutaneously in pulsatile or continuous mode, compared with the long‐acting D2 agonist cabergoline. Normal as well as untreated MPTP animals were also studied. PPE mRNA levels were elevated in the caudate nucleus and putamen of untreated MPTP monkeys compared with control animals with a more pronounced increase in the lateral as compared with the medial part of both structures. PPT mRNA levels showed a rostrocaudal gradient, with higher values in the middle of the caudate‐putamen and more so in the medial versus the lateral parts. PPT mRNA levels were decreased in the caudate and putamen of untreated MPTP monkeys compared with control animals, and this was observed in the middle and posterior parts of these brain areas. Elevated PPE and decreased PPT mRNA levels observed after MPTP exposure were corrected after treatment with cabergoline (0.25 mg/kg, every other day), a dose that had antiparkinsonian effects and did not give sustained dyskinesia. In contrast, elevated PPE mRNA levels observed in untreated MPTP monkeys were markedly increased by pulsatile administration of SKF‐82958 (1 mg/kg, three times daily) in two monkeys in which the parkinsonian symptoms were improved and dyskinesias developed, whereas it remained close to control values in a third one that did not display dyskinesias despite a sustained improvement in disability ; a shorter duration of motor benefit (wearing off) over time was observed in these three animals. By contrast, pulsatile administration of SKF‐82958 corrected the decreased PPT level observed in untreated MPTP monkeys. Continuous treatment with SKF‐82958 (equivalent daily dose) produced no clear antiparkinsonian and dyskinetic responses and did not alter the denervation‐induced elevation of PPE or decrease of PPT mRNA levels. The present data suggest an opposite contribution of the dopamine D1 receptors (stimulatory) as compared with the dopamine D2 receptors (inhibitory) on PPE mRNA, whereas a similar stimulatory contribution of D1 or D2 receptors is observed for PPT mRNA. An increase in PPE expression could be involved in the induction of dyskinesias and wearing off, whereas our data do not support this link for PPT. The antiparkinsonian response was associated with a correction of the lesion‐induced decrease of PPT.


European Journal of Neuroscience | 1998

Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies.

Marc Morissette; Martin Goulet; Richard Grondin; Pierre Blanchet; Paul J. Bédard; Thérèse Di Paolo; Daniel Lévesque

The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6‐hydroxydopamine lesion of the nigrostriatal system in rat down‐regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) and chronic D1‐like (SKF 82958) or D2‐like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate‐putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1‐like, but not a D2‐like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinsons disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.


Brain Research | 1995

Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA, receptors in the striatopallidal complex

Frédéric Calon; Martin Goulet; Pierre Blanchet; J.C. Martel; M.F. Piercey; P.J. Be´dard; T. Di Paolo

Dopamine D1 and D2 receptors as well as the GABA/benzodiazepine receptor complex in the striatum and the globus pallidus (internal: GPi and external: GPe) were studied by autoradiography using [3H]SCH 23390, [3H]spiperone, and [3H]flunitrazepam ([3H]FNZ) respectively, in five groups of cynomolgus monkeys. These included (i) untreated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-monkeys; (ii) MPTP monkeys treated chronically with levodopa injections; (iii) MPTP monkeys treated chronically with injections of the novel D2 agonist U91356A; (iv) MPTP monkeys treated chronically with U91356A delivered through an osmotic mini-pump; and (5) naive controls. Animals treated in a pulsatile mode with U91356A or levodopa injections showed progressive sensitization to their respective drug and developed choreic dyskinesia. In contrast, animals treated in a continuous mode with U91356A showed behavioral tolerance but did not develop dyskinesia. A trend for a down-regulation of putaminal D2 receptors was observed following D2 agonist stimulation with U913356A. Striatal [3H]FNZ binding was significantly decreased only in animals treated in a continuous mode with U91356A. The dopamine receptor decrease in the striatum could be implicated with the development of tolerance but cannot explain the appearance of dyskinesia. Denervation by MPTP was associated with a decrease of the GPe/GPi [3H]FNZ binding ratio which reflects an imbalance of striatal output pathways; this ratio was not reversed by any of the treatments although changes were observed in the GPe and GPi. Indeed, pulsatile U91356A treatment restored the decreased [3H]FNZ binding in the GPe near control values and levodopa showed a similar tendency. A significant increase of [3H]FNZ binding in the GPi only of dyskinetic monkeys, namely those treated with pulsatile U91356A or levodopa was seen compared to untreated MPTP or naive controls. This GABAA receptor up-regulation might lead to a supersensitive state of the GPi to gabaergic input which may be involved in the mechanism underlying the development of dopaminomimetic-induced dyskinesia.


Trends in Neurosciences | 2000

Dopamine-receptor stimulation: biobehavioral and biochemical consequences

Frédéric Calon; Abdallah Hadj Tahar; Pierre Blanchet; Marc Morissette; Richard Grondin; Martin Goulet; Jean-Pierre Doucet; George S. Robertson; Eric J. Nestler; Thérèse Di Paolo; Paul J. Bédard

The MPTP monkey is a well-characterized animal model of parkinsonism and provides an exceptional tool for the study of dyskinesias induced by dopamine-like agents. Several such agents have been tested during the past 15 years, and it has been found that the duration of action of these compounds is the most reliable variable with which to predict their dyskinesiogenic profile. It is proposed that L-dopa-induced dyskinesias represent a form of pathological learning caused by chronic pulsatile (nonphysiological) stimulation of dopamine receptors, which activates a cascade of molecular and biochemical events. These events include defective regulation of Fos proteins that belong to the deltaFosB family, increased expression of neuropeptides, and defective GABA- and glutamate-mediated neurotransmission in the output structures of the basal ganglia.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2002

Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment.

Frédéric Calon; Marc Morissette; Othman Ghribi; Martin Goulet; Richard Grondin; Pierre Blanchet; Paul J. Bédard; Thérèse DiPaolo

The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal lesion and dopaminomimetic treatment on parameters of glutamatergic activity within the basal ganglia of monkeys were studied in relation with the development of dyskinesias. Drug-naive controls, saline-treated MPTP monkeys, as well as MPTP monkeys treated with either a long-acting D2 agonist (cabergoline) or a D1 agonist (SKF-82958) given by intermittent injections or continuous infusion, were included in this study. 3H-L-glutamate, 3H-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA), 3H-glycine, 3H-CGP39653 (an N-methyl-D-aspartate, NMDA, antagonist selective for NR1/NR2A assembly) and 3H-Ro 25-6981 (an NMDA antagonist selective for NR1/NR2B assembly), specific binding to glutamate receptors, the expression of the NR1 subunit of NMDA receptors and glutamate, glutamine and glycine concentrations were studied by autoradiography, in situ hybridization and high-performance liquid chromatography (HPLC), respectively. Pulsatile SKF-82958 and cabergoline treatment relieved parkinsonian symptoms, whereas animals continuously treated with SKF-82958 remained akinetic. Pulsatile SKF-82958 induced dyskinesias in two of the three animals tested, whereas cabergoline did not. MPTP induced no significant changes of striatal specific binding of the radioligands used, NR1 mRNA expression and amino acid concentrations. In the putamen, pulsatile SKF-82958 treatment was associated with decreased content of glycine and glutamate, whereas only glycine was decreased in cabergoline-treated monkeys. Cabergoline and continuous administration of SKF-82958 led to lower levels of NR1 mRNA in the caudate in comparison to pulsatile SKF-82958 administration. The development of dyskinesias following a D1 agonist treatment was associated with an upregulation of 3H-glutamate [+49%], 3H-AMPA [+38%], 3H-CGP39653 [+ 111%], 3H-glycine [+ 26%, nonsignificant] and 3H-Ro 25-6981 [+ 33%] specific binding in the striatum in comparison to nondyskinetic MPTP monkeys. Our data suggest that supersensitivity to glutamatergic input in the striatum might play a role in the pathogenesis of dopaminomimetic-induced dyskinesias and further support the therapeutic potential of glutamate antagonists in Parkinsons disease.


Neurochemistry International | 1999

Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: effects on basal ganglia GABAA/benzodiazepine receptor complex and GABA content

Frédéric Calon; Marc Morissette; Martin Goulet; Richard Grondin; Pierre Blanchet; Paul J. Bédard; Thérèse Di Paolo

The effect of various chronic dopaminergic treatments in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys on the brain gamma-aminobutyric acid type A (GABA(A)) /benzodiazepine receptor complex and GABA content was investigated in order to assess the GABAergic involvement in dopaminomimetic-induced dyskinesia. Three MPTP monkeys received for one month pulsatile administrations of the D1 dopamine (DA) receptor agonist SKF 82958 whereas three others received the same dose of SKF 82958 by continuous infusion. A long acting D2 DA receptor agonist, cabergoline, was given to another three animals. Untreated MPTP as well as naive control animals were also included. Pulsatile SKF 82958 relieved parkinsonian symptoms but was also associated with dyskinesia in two of the three animals whereas animals treated continuously with SKF 82958 remained as untreated MPTP monkeys. Chronic cabergoline administration improved motor response with no persistent dyskinesia. MPTP treatment induced a decrease of 3H-flunitrazepam binding in the medial anterior part of caudate-putamen and an increase in the internal segment of globus pallidus (GPi) which was in general unchanged by pulsatile or continuous SKF 82958 administration. Throughout the striatum, binding of 3H-flunitrazepam remained reduced in MPTP monkeys treated with cabergoline but was not significantly lower than untreated MPTP monkeys. Moreover, cabergoline treatment reversed the MPTP-induced increase in 3H-flunitrazepam binding in the GPi. GABA concentrations remained unchanged in the striatum, external segment of globus pallidus and GPi following MPTP denervation. Pulsatile but not continuous SKF 82958 administration decreased putamen GABA content whereas cabergoline treatment decreased caudate GABA. No alteration in GABA levels were observed in the GPe and GPi following the experimental treatments. These results suggest that: (1) D2-like receptor stimulation with cabergoline modulates GABA(A) receptor density in striatal subregions anatomically related to associative cortical afferent and (2) the absence of dyskinesia in dopaminomimetic-treated monkeys might be associated with the reversal of the MPTP-induced upregulation of the GABA(A)/benzodiazepine receptor complex in the Gpi.


Brain Research | 1996

Dyskinesias and tolerance induced by chronic treatment with a D1 agonist administered in pulsatile or continuous mode do not correlate with changes of putaminal D1 receptors in drug-naive MPTP monkeys

Martin Goulet; Richard Grondin; Pierre Blanchet; Paul J. Bédard; T. Di Paolo

Nine monkeys (Macaca fascicularis) were rendered parkinsonian after intravenous administration of the toxin MPTP. Three of these animals received pulsatile administration of the D1 receptor agonist SKF 82958 (1 mg/kg, three times daily) while three were treated by continuous infusion via an osmotic mini-pump with SKF 82958 (at an equivalent amount daily) for 29 days. Untreated MPTP as well as healthy control animals were also studied. Relief of parkinsonian symptoms was observed in the three animals of the pulsatile group. However, dyskinesia occurred in two monkeys which had striatal dopamine depletion of > 99% compared to the non-dyskinetic animal slightly less denervated (94%). Monkeys receiving continuous SKF 82958 showed no anti-parkinsonian effect and no dyskinesia. All monkeys from the pulsatile and continuous group had measurable amount of plasma SKF 82958 as assayed by HPLC with electrochemical detection. In the putamen of all SKF 82958-treated monkeys, Bmax of D1 receptors labeled with [3H]SCH 23390 were increased versus untreated MPTP-monkeys with no change in Kd. In contrast, a decrease D1 receptor density was observed in the nucleus accumbens of untreated MPTP monkeys versus controls and this was not corrected with either pulsatile or continuous SKF 82958 treatments. D2 receptor density measured with [3H]spiperone binding was increased in the posterior putamen of SKF 82958-treated monkeys whereas no change was observed in the accumbens compared to control animals. Hence, tolerance with the continuous administration of a D1 agonist is not associated with a decrease of putaminal D1 or D2 receptor densities and dyskinesia could not be specifically associated with an increase of putaminal D1 receptors.


Brain Research | 1996

Cabergoline, a long-acting dopamine D2-like receptor agonist, produces a sustained antiparkinsonian effect with transient dyskinesias in parkinsonian drug-naive primates

Richard Grondin; Martin Goulet; T. Di Paolo; Paul J. Bédard

Continuous dopaminergic receptor stimulation is now considered as an interesting approach for the control of motor complications often seen in parkinsonian patients treated chronically with levodopa. Cabergoline, which is a long-acting dopamine D2-like receptor agonist, has been tried recently with good results as an adjunct in patients already on levodopa-therapy. Thus, the present study was designed to test the effects of repeated s.c. administration of cabergoline as sole therapeutic agent during a month in 3 drug-naive MPTP parkinsonian monkeys to see whether or not cabergoline, given every other day at 0.25 mg/kg, would have a sustained antiparkinsonian effect and would induce dyskinesias. The animals were rated to quantify the antiparkinsonian as well as the dyskinetic response and gross locomotor activity was monitored by photocells. The averaged locomotor response, initially greatly increased (approximately 9 times higher than after saline treatment in the same animals), decreased by approximately 50% after 2 weeks but was thereafter maintained at this level until the end of the study. The parkinsonian features were improved in a sustained manner in all monkeys and transient dyskinesias (week 1 and 2) were present in 2 of 3 monkeys. After sacrifice receptor binding assays were performed on striatal and pallidal tissues homogenates with tritiated selective ligands and compared with those of 3 normal and 3 MPTP-exposed monkeys otherwise untreated. A significant decrease in dopamine D2-like receptor density in the putamen (-36% on average vs. untreated MPTP-exposed monkeys) may be involved in the behavioral partial tolerance to antiparkinsonian effect of cabergoline and the disappearance of dyskinesias. A reversal of the supersensitivity of GABAA receptor in the internal segment of the globus pallidus (-15% on average vs. untreated MPTP-exposed monkeys) may also be implicated in this latter behavioral effect.


Neuroscience | 1997

Continuous or pulsatile chronic D2 dopamine receptor agonist (U91356A) treatment of drug-naive 4-phenyl-1,2,3,6-tetrahydropyridine monkeys differentially regulates brain D1 and D2 receptor expression: in situ hybridization histochemical analysis

Martin Goulet; Marc Morissette; Frédéric Calon; Pierre Blanchet; Pierre Falardeau; Paul J. Bédard; T. Di Paolo

The effect of a chronic D2 dopamine receptor agonist (U91356A) treatment on dopamine receptor gene expression in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys was investigated using quantitative in situ hybridization histochemistry. U91356A was administered to MPTP-monkeys for 27 days in a pulsatile (n=3) or continuous (n=3) schedule. Animals treated in a pulsatile mode showed progressive sensitization and developed dyskinesia; whereas with the continuous mode behavioural tolerance was observed but no dyskinesia developed. Untreated MPTP as well as naive control animals were also studied. The efficacy and uniformity of the MPTP effect was assessed by measures of dopamine concentrations by high performance liquid chromatography with electrochemical detection in the relevant brain areas. D1 and D2 receptor messenger RNAs levels were examined by in situ hybridization histochemistry using human complementary RNA probes. Intense specific labelling for D1 and D2 receptor messenger RNAs was measured in the caudate and putamen with a rostrocaudal gradient for D2 receptors and a lower density in the cortex for D1 receptors messenger RNA. D1 receptor mRNA levels in rostral striatum and cortex decreased whereas D2 receptor messenger RNA in caudal striatum increased in MPTP-monkeys compared to control animals. Continuous administration of U91356A reversed the MPTP-induced increase of D2 receptor messenger RNA, whereas the pulsatile administration did not significantly correct these messenger RNA changes. U91356A treatment whether continuous or pulsatile partially corrected the D1 receptor messenger RNA lesion-induced decrease in the striatum, whereas no correction was observed in the cortex. All MPTP-monkeys were extensively and similarly denervated suggesting that the D1 and D2 receptor expression changes following U91356A administration were treatment related. Our data show a lesion-induced imbalance of D1 (decrease) and D2 (increase) receptor messenger RNAs in the striatum of MPTP-monkeys. The response of these receptors to D1 agonist treatment showed receptor selectivity and was influenced by the time-course of drug delivery. Hence chronic continuous but not pulsatile administration of U91356A reversed the striatal D1 receptor messenger RNA increase.

Collaboration


Dive into the Martin Goulet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge