Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Graus is active.

Publication


Featured researches published by Martin Graus.


Journal of the American Society for Mass Spectrometry | 2010

High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time

Martin Graus; Markus Müller; Armin Hansel

We present the unprecedented capability to identify and quantify volatile organic compounds (VOCs) by means of proton transfer reaction time-of-flight (PTR-TOF) mass spectrometry on-line with high time resolution. A mass resolving power of 4000–5000 and a mass accuracy of 2.5 ppm allow for the unambiguous sum-formula identification of hydrocarbons (HCs) and oxygenated VOCs (OVOCs). Test masses measured over an 11-wk period are very precise (SD < 3.4 ppm) and the mass resolving power shows good stability (SD < 5%). Based on a 1 min time resolution, we demonstrate a detection limit in the low pptv range featuring a dynamic range of six orders of magnitude. Sub-ppbv VOC concentrations are analyzed within a second; sub-pptv detection limits are achieved within a few tens of minutes. We present a thorough characterization of our recently developed PTR-TOF system and address application fields for the new instrument.


Journal of Breath Research | 2009

On-line breath analysis with PTR-TOF

Jens Herbig; Markus Müller; Simon Schallhart; Thorsten Titzmann; Martin Graus; Armin Hansel

We report on on-line breath gas analysis with a new type of analytical instrument, which represents the next generation of proton-transfer-reaction mass spectrometers. This time-of-flight mass spectrometer in combination with the soft proton-transfer-reaction ionization (PTR-TOF) offers numerous advantages for the sensitive detection of volatile organic compounds and overcomes several limitations. First, a time-of-flight instrument allows for a measurement of a complete mass spectrum within a fraction of a second. Second, a high mass resolving power enables the separation of isobaric molecules and the identification of their chemical composition. We present the first on-line breath measurements with a PTR-TOF and demonstrate the advantages for on-line breath analysis. In combination with buffered end-tidal (BET) sampling, we obtain a complete mass spectrum up to 320 Th within one exhalation with a signal-to-noise ratio sufficient to measure down to pptv levels. We exploit the high mass resolving power to identify the main components in the breath composition of several healthy volunteers.


Plant Physiology | 2004

Contribution of Different Carbon Sources to Isoprene Biosynthesis in Poplar Leaves

Jörg-Peter Schnitzler; Martin Graus; Jürgen Kreuzwieser; Ulrike Heizmann; Heinz Rennenberg; Armin Wisthaler; Armin Hansel

This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus × canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.


Environmental Science & Technology | 2012

Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget

Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown

Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.


Atmospheric Chemistry and Physics | 2010

Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

T. M. Ruuskanen; M. Müller; R. Schnitzhofer; Thomas Karl; Martin Graus; Ines Bamberger; Lukas Hörtnagl; Federico Brilli; Georg Wohlfahrt; Armin Hansel

Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.


Physiologia Plantarum | 2010

Real-time monitoring of herbivore induced volatile emissions in the field.

Andrea Schaub; James D. Blande; Martin Graus; Elina Oksanen; Jarmo K. Holopainen; Armin Hansel

When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.


Plant Physiology | 2004

Transient Release of Oxygenated Volatile Organic Compounds during Light-Dark Transitions in Grey Poplar Leaves

Martin Graus; Jörg-Peter Schnitzler; Armin Hansel; Cristian Cojocariu; Heinz Rennenberg; Armin Wisthaler; Jürgen Kreuzwieser

In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: hexenal was emitted first, followed by acetaldehyde and other C6-VOCs. Under anoxic conditions, acetaldehyde was the only compound released after switching off the light. This clearly indicated that hexenal and other C6-VOCs were released from the lipoxygenase reaction taking place during light-dark transitions under aerobic conditions. Experiments with enzyme inhibitors that artificially increased cytosolic pyruvate demonstrated that the acetaldehyde burst after light-dark transition could not be explained by the recently suggested pyruvate overflow mechanism. The simulation of light fleck situations in the canopy by exposing leaves to alternating light-dark and dark-light transitions or fast changes from high to low photosynthetic photon flux density showed that this process is of minor importance for acetaldehyde emission into the Earths atmosphere.


Scientific Reports | 2015

Atmospheric benzenoid emissions from plants rival those from fossil fuels

Pawel K. Misztal; C. N. Hewitt; J. Wildt; James D. Blande; Allyson S. D. Eller; Silvano Fares; D. R. Gentner; J. B. Gilman; Martin Graus; James A Greenberg; Alex Guenther; Armin Hansel; Peter Harley; Maoyi Huang; K. Jardine; Thomas Karl; Lisa Kaser; Frank N. Keutsch; Astrid Kiendler-Scharr; E. Kleist; Tao Li; John E. Mak; A. C. Nölscher; R. Schnitzhofer; V. Sinha; Brenda Thornton; Carsten Warneke; Frederik Wegener; Christiane Werner; J. Williams

Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y−1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.


Atmospheric Measurement Techniques | 2016

Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

Carsten Warneke; M. Trainer; Joost A. de Gouw; D. D. Parrish; D. W. Fahey; A. R. Ravishankara; Ann M. Middlebrook; C. A. Brock; James M. Roberts; Steven S. Brown; J. A. Neuman; D. A. Lack; Daniel Law; G. Hübler; Iliana Pollack; Steven Sjostedt; Thomas B. Ryerson; J. B. Gilman; Jin Liao; John S. Holloway; J. Peischl; J. B. Nowak; K. C. Aikin; Kyung-Eun Min; Rebecca A. Washenfelder; Martin Graus; Mathew Richardson; Milos Z. Markovic; Nick L. Wagner; André Welti

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.


Journal of Geophysical Research | 2011

Deposition fluxes of terpenes over grassland

Ines Bamberger; Lukas Hörtnagl; T. M. Ruuskanen; R. Schnitzhofer; M. Müller; Martin Graus; Thomas Karl; Georg Wohlfahrt; Armin Hansel

Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction - mass spectrometer (PTR-MS) and a PTR-time of flight - mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant re-emission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1st of April to 1st of November), the cumulative carbon deposition of monoterpenes reached 276 mg C m-2. This is comparable to the net carbon emission of methanol (329 mg C m-2), which is the dominant non methane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed.

Collaboration


Dive into the Martin Graus's collaboration.

Top Co-Authors

Avatar

Armin Hansel

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost A. de Gouw

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

J. A. de Gouw

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven S. Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

P. R. Veres

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Karl

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge