Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Hadamitzky is active.

Publication


Featured researches published by Martin Hadamitzky.


Behavioural Brain Research | 2014

Acute systemic rapamycin induces neurobehavioral alterations in rats

Martin Hadamitzky; Arne Herring; Kathy Keyvani; Raphaël Doenlen; Ute Krügel; Katharina Bösche; Kathrin Orlowski; Harald Engler; Manfred Schedlowski

Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression. However, whether these symptoms are attributed to the action of the distinct compounds remains rather elusive. The present study investigated in rats neurobehavioral consequences of acute rapamycin treatment. Systemic administration of a single low dose rapamycin (3mg/kg) led to enhanced neuronal activity in the amygdala analyzed by intracerebral electroencephalography and FOS protein expression 90min after drug injection. Moreover, behavioral investigations revealed a rapamycin-induced increase in anxiety-related behaviors in the elevated plus-maze and in the open-field. The behavioral alterations correlated to enhanced amygdaloid expression of KLK8 and FKBP51, proteins that have been implicated in the development of anxiety and depression. Together, these results demonstrate that acute blockade of mTOR signaling by acute rapamycin administration not only causes changes in neuronal activity, but also leads to elevated protein expression in protein kinase pathways others than mTOR, contributing to the development of anxiety-like behavior. Given the pivotal role of the amygdala in mood regulation, associative learning, and modulation of cognitive functions, our findings raise the question whether therapy with rapamycin may induce alterations in patients neuropsychological functioning.


Journal of Neuroimmune Pharmacology | 2013

Learned Immunosuppression: Extinction, Renewal, and the Challenge of Reconsolidation

Martin Hadamitzky; Harald Engler; Manfred Schedlowski

Behavioral conditioning of immune responses is one of the most impressive examples for the bidirectional communication among the nervous and immune systems. We established a model of behaviorally conditioned immunosuppression employing a conditioned taste aversion (CTA) paradigm in the rat pairing a novel taste (saccharin) as a conditioned stimulus (CS) with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US). By re-presenting the CS during evocation, rats avoid drinking the saccharin. Concomitantly animals display an immunosuppression reflected by an ex vivo reduction in splenic T cell proliferation as well as diminished interleukin-2 and interferon-γ production and cytokine mRNA expression, mimicking the actual effect of the US (CsA). Due to the fact that the kinetics of this behaviorally conditioned immunosuppression are completely unknown, extinction of the conditioned response on the behavioral level (CTA) as well as in the immune response needs to be elucidated together with the neural processes mediating the extinction process.


Brain Behavior and Immunity | 2016

Memory-updating abrogates extinction of learned immunosuppression

Martin Hadamitzky; Katharina Bösche; Timo Wirth; Benjamin Buck; Oliver Beetz; Uwe Christians; Björn Schniedewind; Laura Lückemann; Onur Güntürkün; Harald Engler; Manfred Schedlowski

When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning.


Neuroscience | 2015

Extinction of conditioned taste aversion is related to the aversion strength and associated with c-fos expression in the insular cortex

Martin Hadamitzky; Katharina Bösche; Andrea Engler; Manfred Schedlowski; Harald Engler

Taste aversion learning is a type of conditioning where animals learn to associate a novel taste (conditioned stimulus; CS) with a stimulus inducing symptoms of poisoning or illness (unconditioned stimulus; US). As a consequence animals later avoid this taste, a reaction known as conditioned taste aversion (CTA). An established CTA extinguishes over time when the CS is repeatedly presented in the absence of the US. However, inter-individual differences in CTA extinction do exist. Using a model of behavioral conditioning with saccharin as CS and the immunosuppressant cyclosporine A as US, the present study aimed at further elucidating the factors underlying individual differences in extinction learning by investigating whether extinction of an established CTA is related to the strength of the initially acquired CS-US association. In addition, we analyzed the expression of the neuronal activation marker c-fos in brain structures relevant for acquisition and retrieval of the CTA, such as the insular cortex and the amygdala. We here show that animals, displaying a strong CS-US association during acquisition, maintained a strong CTA during unreinforced CS re-exposures, in contrast to animals with moderate CS-US association. Moreover, the latter animals showed increased c-fos mRNA expression in the insular cortex. Our data indicate that CTA extinction apparently depends on the strength of the initially learned CS-US association. In addition, these findings provide further evidence that the memory for the initial excitatory conditioning and its subsequent extinction is probably stored in those structures that participate in the processing of the CS and the US.


Physiology & Behavior | 2016

Exogenous oxytocin reduces signs of sickness behavior and modifies heart rate fluctuations of endotoxemic rats

José Javier Reyes-Lagos; Martin Hadamitzky; Miguel Ángel Peña-Castillo; Juan Carlos Echeverría; Katharina Bösche; Laura Lückemann; Manfred Schedlowski; Gustavo Pacheco-López

Besides the well-known roles of oxytocin on birth, maternal bonding, and lactation, recent evidence shows that this hypothalamic hormone possesses cardioprotective, anti-inflammatory and parasympathetic neuromodulation properties. In this study, we explore the heart rate fluctuations (HRF) in an endotoxemic rodent model that was accompanied by the administration of exogenous oxytocin. The assessment of HRF has been widely used as an indirect measure of the cardiac autonomic function. In this context, adult male Dark Agouti rats were equipped with a telemetric transmitter to continuously and remotely measure the electrocardiogram, temperature, and locomotion. In a between-subjects experimental design, rats received the following peripheral treatment: saline solution as a vehicle (V); lipopolysaccharide (LPS); oxytocin (Ox); lipopolysaccharide + oxytocin (LPS+Ox). Linear and non-linear parameters of HRF were estimated starting 3h before to 24h after treatments. Our results showed that exogenous oxytocin does not modify by itself the HRF of oxytocin-treated rats in comparison to vehicle-treated rats. However, in animals undergoing endotoxemia it: a) provokes a less anticorrelated pattern in HRF, b) decreased mean heart rate, c) moderated the magnitude and duration of the LPS-induced hyperthermia, and d) increased locomotion, up to 6h after the LPS injection. The less anticorrelated pattern in the HRF and decreased mean heart rate may reflect a cardiac pacemaker coupling with cholinergic influences mediated by oxytocin during LPS-induced endotoxemia. Finally, the anti-lethargic and long-term temperature moderating effects of the administration of oxytocin during endotoxemia could be a consequence of the systemic anti-inflammatory properties of oxytocin.


Brain Behavior and Immunity | 2016

Pre-exposure to the unconditioned or conditioned stimulus does not affect learned immunosuppression in rats.

Laura Lueckemann; Katharina Bösche; Harald Engler; Jan-Claudius Schwitalla; Martin Hadamitzky; Manfred Schedlowski

In order to analyze the effects of pre-exposure to either the unconditioned (US) or conditioned stimulus (CS) on learned immunosuppression, we employed an established conditioned taste aversion (CTA) paradigm in rats. In our model, a sweet-tasting drinking solution (saccharin) serves as CS and injection of the immunosuppressive drug cyclosporine A (CsA) is used as US. The conditioned response is reflected by a pronounced CTA and diminished cytokine production by anti-CD3 stimulated splenic T cells. In the present study, experimental animals were exposed either to the US or the CS three times prior to the acquisition phase. On the behavioral level, we found a significantly diminished CTA when animals were pre-exposed to the US or the CS before acquisition. In contrast, US or CS pre-exposure did not affect the behaviorally conditioned suppression of interleukin (IL)-2 production. From the clinical perspective, our data may suggest that conditioning paradigms could be systemically integrated as supportive therapeutic interventions in patients that are already on immunosuppressive therapy or have had previous contact to the gustatory stimulus. Such supportive therapies to pharmacological regimens could not only help to reduce the amount of medication needed and, thus, unwanted toxic side effects, but may also maximize the therapeutic outcome.


Oxidative Medicine and Cellular Longevity | 2016

Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury

Daniela Hoeber; Marco Sifringer; Yohan van de Looij; Josephine Herz; Stéphane Sizonenko; Karina Kempe; Meray Serdar; Joanna Palasz; Martin Hadamitzky; Stefanie Endesfelder; Joachim Fandrey; Ursula Felderhoff-Müser; Ivo Bendix

Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity.


Neurobiology of Learning and Memory | 2016

Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A

Martin Hadamitzky; Kathrin Orlowski; Jan Claudius Schwitalla; Katharina Bösche; Meike Unteroberdörster; Ivo Bendix; Harald Engler; Manfred Schedlowski

Conditioned responses gradually weaken and eventually disappear when subjects are repeatedly exposed to the conditioned stimulus (CS) in the absence of the unconditioned stimulus (US), a process called extinction. Studies have demonstrated that extinction of conditioned taste aversion (CTA) can be prevented by interfering with protein synthesis in the insular cortex (IC). However, it remained unknown whether it is possible to pharmacologically stabilize the taste aversive memory trace over longer periods of time. Thus, the present study aimed at investigating the time frame during which extinction of CTA can be efficiently prevented by blocking protein synthesis in the IC. Employing an established conditioning paradigm in rats with saccharin as CS, and the immunosuppressant cyclosporine A (CsA) as US, we show here that daily bilateral intra-insular injections of the protein synthesis inhibitor anisomycin (120μg/μl) immediately after retrieval significantly diminished CTA extinction over a period of five retrieval days and subsequently reached levels of saline-infused controls. These findings demonstrate that it is possible to efficiently delay but not to fully prevent CTA extinction during repeated retrieval trials by blocking protein translation with daily bilateral infusions of anisomycin in the IC. These data confirm and extent earlier reports indicating that the role of protein synthesis in CTA extinction learning is not limited to gastrointestinal malaise-inducing drugs such as lithium chloride (LiCl).


Neurobiology of Learning and Memory | 2017

Applications and limitations of behaviorally conditioned immunopharmacological responses

Laura Lückemann; Meike Unteroberdörster; Julia Kirchhof; Manfred Schedlowski; Martin Hadamitzky

The importance of placebo responses for the treatment of various medical conditions has increasingly been recognized, whereas knowledge and systematic application in clinical settings are still sparse. One possible application for placebo responses in pharmacotherapy is given by learning paradigms, such as behaviorally conditioned immunosuppression, aiming at drug dose reduction while maintaining therapeutic efficacy of drug treatment. In an established learning paradigm of conditioned taste aversion/avoidance (CTA) in both, rats and humans, respectively, a novel-tasting drinking solution (conditioned stimulus, CS) is paired with an injection of the immunosuppressive drug cyclosporine A (CsA) as unconditioned stimulus (US). The conditioned response, evoked by re-presenting the CS alone at a later time, is reflected by avoidance behavior of consuming the solution (conditioned taste aversion; CTA) and a diminished interleukin (IL)-2 and interferon (IFN)-γ cytokine production as well as mRNA expression of rat splenic T cells or human peripheral T lymphocytes, closely mimicking the immunosuppressive effects of CsA. However, due to unreinforced CS-re-exposure conditioned responses progressively decreases over time (extinction), reflecting a considerable challenge for potential clinical applications of this learned immunosuppression. The present article discusses and critically reviews actual approaches, applications but also limitations of learning paradigms in immune pharmacotherapy.


Behavioural Brain Research | 2016

Rats taste-aversive learning with cyclosporine a is not affected by contextual changes.

Akin Tuerkmen; Katharina Bösche; Laura Lückemann; Harald Engler; Manfred Schedlowski; Martin Hadamitzky

In conditioned taste aversion (CTA) rats associate a novel taste (conditioned stimulus; CS) with a treatment (unconditioned stimulus; US) that induces symptoms of malaise. During retrieval, animals learn that the CS no longer predicts the US, with the consequence that the behavior elicited by the CS extinguishes. Importantly, CTA data with lithium chloride (LiCl) as US indicate that extinction learning is affected by changing the physical context. However, if this is also the case in different taste-aversion paradigms employing compounds other than LiCL as US is unknown. Against this background the present study investigated in a CTA paradigm with saccharin as CS and the immunosuppressant cyclosporine A (CsA) as US the influence of contextual changes on CTA extinction. Our results show, that extinction of a learned CS-US association with CsA is not prone to contextual changes. Due to the direct effects of CsA on CNS functioning, CTA with this immunosuppressant apparently operates under different mechanisms compared to other drugs, such as LiCl. These data indicate that taste aversive learning and its extinction are not necessarily specific to the context in which it is learned but also depends, at least in part, on the physiological and neuropharmacological effects of the drug employed as US.

Collaboration


Dive into the Martin Hadamitzky's collaboration.

Top Co-Authors

Avatar

Manfred Schedlowski

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Harald Engler

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Katharina Bösche

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Laura Lückemann

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Ivo Bendix

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Kathrin Orlowski

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Josephine Herz

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Julia Kirchhof

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge