Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Heeney is active.

Publication


Featured researches published by Martin Heeney.


Advanced Materials | 2010

n‐Type Organic Semiconductors in Organic Electronics

John E. Anthony; Antonio Facchetti; Martin Heeney; Seth R. Marder; Xiaowei Zhan

Organic semiconductors have been the subject of intensive academic and commercial interest over the past two decades, and successful commercial devices incorporating them are slowly beginning to enter the market. Much of the focus has been on the development of hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or so called n-type, materials, and in this paper we focus upon recent developments in several classes of n-type materials and the design guidelines used to develop them.


Journal of the American Chemical Society | 2011

Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices

Hugo Bronstein; Zhuoying Chen; Raja Shahid Ashraf; Weimin Zhang; Junping Du; James R. Durrant; Pabitra Shakya Tuladhar; Kigook Song; Scott E. Watkins; Yves Geerts; Mm Martijn Wienk; René A. J. Janssen; Thomas D. Anthopoulos; Henning Sirringhaus; Martin Heeney; Iain McCulloch

We report the synthesis and polymerization of a novel thieno[3,2-b]thiophene-diketopyrrolopyrrole-based monomer. Copolymerization with thiophene afforded a polymer with a maximum hole mobility of 1.95 cm(2) V(-1) s(-1), which is the highest mobility from a polymer-based OFET reported to date. Bulk-heterojunction solar cells comprising this polymer and PC(71)BM gave a power conversion efficiency of 5.4%.


Journal of the American Chemical Society | 2008

Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy.

Hideo Ohkita; Steffan Cook; Yeni Astuti; Warren Duffy; Steve Tierney; Weimin Zhang; Martin Heeney; Iain McCulloch; Jenny Nelson; and Donal D. C. Bradley; James R. Durrant

We report herein a comparison of the photophysics of a series of polythiophenes with ionization potentials ranging from 4.8 to 5.6 eV as pristine films and when blended with 5 wt % 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61 (PCBM). Three polymers are observed to give amorphous films, attributed to a nonplanar geometry of their backbone while the other five polymers, including poly(3-hexylthiophene), give more crystalline films. Optical excitation of the pristine films of the amorphous polymers is observed by transient absorption spectroscopy to give rise to polymer triplet formation. For the more crystalline pristine polymers, no triplet formation is observed, but rather a short-lived (approximately 100 ns), broad photoinduced absorption feature assigned to polymer polarons. For all polymers, the addition of 5 wt % PCBM resulted in 70-90% quenching of polymer photoluminescence (PL), indicative of efficient quenching of polythiophene excitons. Remarkably, despite this efficient exciton quenching, the yield of dissociated polymer+ and PCBM- polarons, assayed by the appearance of a long-lived, power-law decay phase assigned to bimolecular recombination of these polarons, was observed to vary by over 2 orders of magnitude depending upon the polymer employed. In addition to this power-law decay phase, the blend films exhibited short-lived decays assigned, for the amorphous polymers, to neutral triplet states generated by geminate recombination of bound radical pairs and, for the more crystalline polymers, to the direct observation of the geminate recombination of these bound radical pairs to ground. These observations are discussed in terms of a two-step kinetic model for charge generation in polythiophene/PCBM blend films analogous to that reported to explain the observation of exciplex-like emission in poly(p-phenylenevinylene)-based blend films. Remarkably, we find an excellent correlation between the free energy difference for charge separation (deltaG(CS)rel) and yield of the long-lived charge generation, with efficient charge generation requiring a much larger deltaG(CS)rel than that required to achieve efficient PL quenching. We suggest that this observation is consistent with a model where the excess thermal energy of the initially formed polaron pairs is necessary to overcome their Coulombic binding energy. This observation has important implications for synthetic strategies to optimize organic solar cell performance, as it implies that, at least devices based on polythiophene/PCBM blend films, a large deltaG(CS)rel (or LUMO level offset) is required to achieve efficient charge dissociation.


Advanced Materials | 2012

High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities.

Zhuoying Chen; Mi Jung Lee; Raja Shahid Ashraf; Yun Gu; Sebastian Albert-Seifried; Martin Meedom Nielsen; Bob C. Schroeder; Thomas D. Anthopoulos; Martin Heeney; Iain McCulloch; Henning Sirringhaus

Ambipolar OFETs with balanced hole and electron field-effect mobilities both exceeding 1 cm(2) V(-1) s(-1) are achieved based on a single-solution-processed conjugated polymer, DPPT-TT, upon careful optimization of the device architecture, charge injection, and polymer processing. Such high-performance OFETs are promising for applications in ambipolar devices and integrated circuits, as well as model systems for fundamental studies.


Journal of the American Chemical Society | 2010

Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors

Weimin Zhang; Jeremy C. Smith; Scott E. Watkins; Roman Gysel; Michael D. McGehee; Alberto Salleo; James Kirkpatrick; Shahid Ashraf; Thomas D. Anthopoulos; Martin Heeney; Iain McCulloch

High-performance, solution-processed transistors fabricated from semiconducting polymers containing indacenodithiohene repeat units are described. The bridging functions on the backbone contribute to suppressing large-scale crystallization in thin films. However, charge carrier mobilities of up to 1 cm(2)/(V s) for a benzothiadiazole copolymer were reported and, coupled with both ambient stability and long-wavelength absorption, make this family of polymers particularly attractive for application in next-generation organic optoelectronics.


Chemical Science | 2012

Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells

Fiona C. Jamieson; Ester Buchaca Domingo; Thomas McCarthy-Ward; Martin Heeney; Natalie Stingelin; James R. Durrant

Solution processed polymer/fullerene blend films are receiving extensive attention as the photoactive layer of organic solar cells. In this paper we report a range of photophysical, electrochemical, physicochemical and structural data which provide evidence that formation of a relatively pure, molecularly ordered phase of the fullerene component, phenyl-C61-butyric acid methyl ester (PCBM), may be the key factor driving the spatial separation of photogenerated electrons and holes in many of these devices. PCBM crystallisation is shown to result in an increase in its electron affinity, providing an energetic driving force for spatial separation of electrons and holes. Based upon our observations, we propose a functional model applicable to many organic bulk heterojunction devices based upon charge generation in a finely intermixed polymer/fullerene phase followed by spatial separation of electrons and holes at the interface of this mixed phase with crystalline PCBM domains. This model has significant implications for the design of alternative acceptor materials to PCBM for organic solar cells.


Journal of the American Chemical Society | 2011

Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

Xinran Zhang; Lee J. Richter; Dean M. DeLongchamp; R. Joseph Kline; Matthew R. Hammond; Iain McCulloch; Martin Heeney; Raja Shahid Ashraf; Jeremy Smith; Thomas D. Anthopoulos; Bob C. Schroeder; Yves Geerts; Daniel A. Fischer; Michael F. Toney

We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.


Advanced Materials | 2012

A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic.

Auke J. Kronemeijer; Enrico Gili; Munazza Shahid; Jonathan Rivnay; Alberto Salleo; Martin Heeney; Henning Sirringhaus

Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm(2) /Vs and 0.84 cm(2) /Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V.


Nature Communications | 2013

Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer

Xinran Zhang; Hugo Bronstein; Auke J. Kronemeijer; Jeremy C. Smith; Youngju Kim; R. Joseph Kline; Lee J. Richter; Thomas D. Anthopoulos; Henning Sirringhaus; Kigook Song; Martin Heeney; Weimin Zhang; Iain McCulloch; Dean M. DeLongchamp

One of the most inspiring and puzzling developments in the organic electronics community in the last few years has been the emergence of solution-processable semiconducting polymers that lack significant long-range order but outperform the best, high-mobility, ordered semiconducting polymers to date. Here we provide new insights into the charge-transport mechanism in semiconducting polymers and offer new molecular design guidelines by examining a state-of-the-art indacenodithiophene-benzothiadiazole copolymer having field-effect mobility of up to 3.6 cm(2) V(-1) s(-1) with a combination of diffraction and polarizing spectroscopic techniques. Our results reveal that its conjugated planes exhibit a common, comprehensive orientation in both the non-crystalline regions and the ordered crystallites, which is likely to originate from its superior backbone rigidity. We argue that charge transport in high-mobility semiconducting polymers is quasi one-dimensional, that is, predominantly occurring along the backbone, and requires only occasional intermolecular hopping through short π-stacking bridges.


Nano Letters | 2009

Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

Nichole C. Cates; Roman Gysel; Zach M. Beiley; Chad E. Miller; Michael F. Toney; Martin Heeney; Iain McCulloch; Michael D. McGehee

We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells.

Collaboration


Dive into the Martin Heeney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas D. Anthopoulos

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuping Fei

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Weimin Zhang

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge