Martin Hemberg
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Hemberg.
Nature | 2010
Tae Kyung Kim; Martin Hemberg; Jesse M. Gray; Allen M. Costa; Daniel M. Bear; Jing Wu; David A. Harmin; Mike Laptewicz; Kellie Barbara-Haley; Scott Kuersten; Eirene Markenscoff-Papadimitriou; Dietmar Kuhl; Haruhiko Bito; Paul F. Worley; Gabriel Kreiman; Michael E. Greenberg
We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified ∼12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.
Nature | 2008
Hannah H. Chang; Martin Hemberg; Mauricio Barahona; Donald E. Ingber; Sui Huang
Phenotypic cell-to-cell variability within clonal populations may be a manifestation of ‘gene expression noise’, or it may reflect stable phenotypic variants. Such ‘non-genetic cell individuality’ can arise from the slow fluctuations of protein levels in mammalian cells. These fluctuations produce persistent cell individuality, thereby rendering a clonal population heterogeneous. However, it remains unknown whether this heterogeneity may account for the stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of mouse haematopoietic progenitor cells, spontaneous ‘outlier’ cells with either extremely high or low expression levels of the stem cell marker Sca-1 (also known as Ly6a; ref. 9) reconstitute the parental distribution of Sca-1 but do so only after more than one week. This slow relaxation is described by a gaussian mixture model that incorporates noise-driven transitions between discrete subpopulations, suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had distinct transcriptomes. Although their unique gene expression profiles eventually reverted to that of the median cells, revealing an attractor state, they lasted long enough to confer a greatly different proclivity for choosing either the erythroid or the myeloid lineage. Preference in lineage choice was associated with increased expression of lineage-specific transcription factors, such as a >200-fold increase in Gata1 (ref. 10) among the erythroid-prone cells, or a >15-fold increased PU.1 (Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clonal heterogeneity of gene expression level is not due to independent noise in the expression of individual genes, but reflects metastable states of a slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, stochastic priming of multipotent progenitor cells in cell fate decision.
Neuron | 2008
Steven W. Flavell; Tae Kyung Kim; Jesse M. Gray; David A. Harmin; Martin Hemberg; Elizabeth J. Hong; Eirene Markenscoff-Papadimitriou; Daniel M. Bear; Michael E. Greenberg
Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorders including epilepsy and autism spectrum disorders, suggesting that these disorders may be caused by disruption of an activity-dependent gene program that controls synapse development. Our analyses also reveal that neuronal activity promotes alternative polyadenylation site usage at many of the MEF2 target genes, leading to the production of truncated mRNAs that may have different functions than their full-length counterparts. Taken together, these analyses suggest that the ubiquitously expressed transcription factor MEF2 regulates an intricate transcriptional program in neurons that controls synapse development.
Nature | 2015
Harrison W. Gabel; Benyam Kinde; Hume Stroud; Caitlin S. Gilbert; David A. Harmin; Nathaniel R. Kastan; Martin Hemberg; Daniel H. Ebert; Michael E. Greenberg
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.
Ecology | 2007
Ross M. Thompson; Martin Hemberg; Jonathan B. Shurin
The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.
Nature Neuroscience | 2014
Bess Frost; Martin Hemberg; Jada Lewis; Mel B. Feany
The microtubule-associated protein tau is involved in a number of neurodegenerative disorders, including Alzheimers disease. Previous studies have linked oxidative stress and subsequent DNA damage to neuronal death in Alzheimers disease and related tauopathies. Given that DNA damage can substantially alter chromatin structure, we examined epigenetic changes in tau-induced neurodegeneration. We found widespread loss of heterochromatin in tau transgenic Drosophila and mice and in human Alzheimers disease. Notably, genetic rescue of tau-induced heterochromatin loss substantially reduced neurodegeneration in Drosophila. We identified oxidative stress and subsequent DNA damage as a mechanistic link between transgenic tau expression and heterochromatin relaxation, and found that heterochromatin loss permitted aberrant gene expression in tauopathies. Furthermore, large-scale analyses from the brains of individuals with Alzheimers disease revealed a widespread transcriptional increase in genes that were heterochromatically silenced in controls. Our results establish heterochromatin loss as a toxic effector of tau-induced neurodegeneration and identify chromatin structure as a potential therapeutic target in Alzheimers disease.
Nature Methods | 2017
Vladimir Yu. Kiselev; Kristina Kirschner; Michael T. Schaub; Tallulah S. Andrews; Andrew Yiu; Tamir Chandra; Kedar Nath Natarajan; Wolf Reik; Mauricio Barahona; Anthony R. Green; Martin Hemberg
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.
BMC Molecular Biology | 2008
Martin Bengtsson; Martin Hemberg; Patrik Rorsman; Anders Ståhlberg
BackgroundGene expression has a strong stochastic element resulting in highly variable mRNA levels between individual cells, even in a seemingly homogeneous cell population. Access to fundamental information about cellular mechanisms, such as correlated gene expression, motivates measurements of multiple genes in individual cells. Quantitative reverse transcription PCR (RT-qPCR) is the most accessible method which provides sufficiently accurate measurements of mRNA in single cells.ResultsLow concentration of guanidine thiocyanate was used to fully lyse single pancreatic β-cells followed by RT-qPCR without the need for purification. The accuracy of the measurements was determined by a quantitative noise-model of the reverse transcription and PCR. The noise is insignificant for initial copy numbers >100 while at lower copy numbers the noise intrinsic of the PCR increases sharply, eventually obscuring quantitative measurements. Importantly, the model allows us to determine the RT efficiency without using artificial RNA as a standard. The experimental setup was applied on single endocrine cells, where the technical and biological noise levels were determined.ConclusionNoise in single-cell RT-qPCR is insignificant compared to biological cell-to-cell variation in mRNA levels for medium and high abundance transcripts. To minimize the technical noise in single-cell RT-qPCR, the mRNA should be analyzed with a single RT reaction, and a single qPCR reaction per gene.
eLife | 2017
Aviv Regev; Sarah A. Teichmann; Eric S Lander; Ido Amit; Christophe Benoist; Ewan Birney; Bernd Bodenmiller; Peter J. Campbell; Piero Carninci; Menna R. Clatworthy; Hans Clevers; Bart Deplancke; Ian Dunham; James Eberwine; Roland Eils; Wolfgang Enard; Andrew Farmer; Lars Fugger; Berthold Göttgens; Nir Hacohen; Muzlifah Haniffa; Martin Hemberg; Seung K. Kim; Paul Klenerman; Arnold R. Kriegstein; Ed Lein; Sten Linnarsson; Emma Lundberg; Joakim Lundeberg; Partha Majumder
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Nature Neuroscience | 2014
Athar N. Malik; Thomas Vierbuchen; Martin Hemberg; Alex A. Rubin; Emi Ling; Cameron H. Couch; Hume Stroud; Ivo Spiegel; Kyle Kai-How Farh; David A. Harmin; Michael E. Greenberg
Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) and binding of the transcriptional coactivator CREBBP (also called CBP) that shows increased acetylation of histone H3 Lys27 (H3K27ac) after membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which was previously thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease.