Martin Hensch
University of Iceland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Hensch.
Nature | 2010
Freysteinn Sigmundsson; Sigrún Hreinsdóttir; Andrew Hooper; Thóra Árnadóttir; Rikke Pedersen; Matthew J. Roberts; Niels Oskarsson; Amandine Auriac; Judicael Decriem; Páll Einarsson; Halldor Geirsson; Martin Hensch; Benedikt Ofeigsson; Erik Sturkell; Hjorleifur Sveinbjornsson; Kurt L. Feigl
Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km3 magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma–ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull’s behaviour can be attributed to its off-rift setting with a ‘cold’ subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.
Science | 2016
Magnús T. Gudmundsson; Kristín Jónsdóttir; Andrew Hooper; Eoghan P. Holohan; Sæmundur A. Halldórsson; Benedikt Ofeigsson; Simone Cesca; Kristin S. Vogfjord; Freysteinn Sigmundsson; Thórdís Högnadóttir; Páll Einarsson; Olgeir Sigmarsson; A. H. Jarosch; Kristján Jónasson; Eyjólfur Magnússon; Sigrún Hreinsdóttir; Marco Bagnardi; Michelle Parks; Vala Hjörleifsdóttir; Finnur Pálsson; Thomas R. Walter; Martin P.J. Schöpfer; Sebastian Heimann; Hannah I. Reynolds; Stéphanie Dumont; E. Bali; Gudmundur H. Gudfinnsson; Torsten Dahm; Matthew J. Roberts; Martin Hensch
Driven to collapse Volcanic eruptions occur frequently, but only rarely are they large enough to cause the top of the mountain to collapse and form a caldera. Gudmundsson et al. used a variety of geophysical tools to monitor the caldera formation that accompanied the 2014 Bárdarbunga volcanic eruption in Iceland. The volcanic edifice became unstable as magma from beneath Bárdarbunga spilled out into the nearby Holuhraun lava field. The timing of the gradual collapse revealed that it is the eruption that drives caldera formation and not the other way around. Science, this issue p. 262 Magma flow from under the Bárdarbunga volcano drove caldera collapse during the 2014 eruption. INTRODUCTION The Bárdarbunga caldera volcano in central Iceland collapsed from August 2014 to February 2015 during the largest eruption in Europe since 1784. An ice-filled subsidence bowl, 110 square kilometers (km2) in area and up to 65 meters (m) deep developed, while magma drained laterally for 48 km along a subterranean path and erupted as a major lava flow northeast of the volcano. Our data provide unprecedented insight into the workings of a collapsing caldera. RATIONALE Collapses of caldera volcanoes are, fortunately, not very frequent, because they are often associated with very large volcanic eruptions. On the other hand, the rarity of caldera collapses limits insight into this major geological hazard. Since the formation of Katmai caldera in 1912, during the 20th century’s largest eruption, only five caldera collapses are known to have occurred before that at Bárdarbunga. We used aircraft-based altimetry, satellite photogrammetry, radar interferometry, ground-based GPS, evolution of seismicity, radio-echo soundings of ice thickness, ice flow modeling, and geobarometry to describe and analyze the evolving subsidence geometry, its underlying cause, the amount of magma erupted, the geometry of the subsurface caldera ring faults, and the moment tensor solutions of the collapse-related earthquakes. RESULTS After initial lateral withdrawal of magma for some days though a magma-filled fracture propagating through Earth’s upper crust, preexisting ring faults under the volcano were reactivated over the period 20 to 24 August, marking the onset of collapse. On 31 August, the eruption started, and it terminated when the collapse stopped, having produced 1.5 km of basaltic lava. The subsidence of the caldera declined with time in a near-exponential manner, in phase with the lava flow rate. The volume of the subsidence bowl was about 1.8 km3. Using radio-echo soundings, we find that the subglacial bedrock surface after the collapse is down-sagged, with no indications of steep fault escarpments. Using geobarometry, we determined the depth of magma reservoir to be ~12 km, and modeling of geodetic observations gives a similar result. High-precision earthquake locations and moment tensor analysis of the remarkable magnitude M5 earthquake series are consistent with steeply dipping ring faults. Statistical analysis of seismicity reveals communication over tens of kilometers between the caldera and the dike. CONCLUSION We conclude that interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual near-exponential decline of both the collapse rate and the intensity of the 180-day-long eruption. By combining our various data sets, we show that the onset of collapse was caused by outflow of magma from underneath the caldera when 12 to 20% of the total magma intruded and erupted had flowed from the magma reservoir. However, the continued subsidence was driven by a feedback between the pressure of the piston-like block overlying the reservoir and the 48-km-long magma outflow path. Our data provide better constraints on caldera mechanisms than previously available, demonstrating what caused the onset and how both the roof overburden and the flow path properties regulate the collapse. The Bárdarbunga caldera and the lateral magma flow path to the Holuhraun eruption site. (A) Aerial view of the ice-filled Bárdarbunga caldera on 24 October 2014, view from the north. (B) The effusive eruption in Holuhraun, about 40 km to the northeast of the caldera
Nature Communications | 2016
J. Ruch; Teng Wang; Wenbin Xu; Martin Hensch; Sigurjón Jónsson
Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.
Nature | 2015
Freysteinn Sigmundsson; Andrew Hooper; Sigrún Hreinsdóttir; Kristin S. Vogfjord; Benedikt Ofeigsson; Elías Rafn Heimisson; Stéphanie Dumont; Michelle Parks; Karsten Spaans; Gunnar B. Gudmundsson; Vincent Drouin; Thóra Árnadóttir; Kristín Jónsdóttir; Magnús T. Gudmundsson; Thórdís Högnadóttir; Hildur María Fridriksdóttir; Martin Hensch; Páll Einarsson; Eyjólfur Magnússon; Sergey V. Samsonov; Bryndís Brandsdóttir; Robert S. White; Thorbjörg Ágústsdóttir; Tim Greenfield; Robert G. Green; Rikke Pedersen; Richard A. Bennett; Halldór Geirsson; Peter La Femina; Helgi Björnsson
Atmospheric Environment | 2012
Baerbel Langmann; Arnau Folch; Martin Hensch; Volker Matthias
Journal of Geophysical Research | 2012
Jon Tarasewicz; Bryndís Brandsdóttir; Robert S. White; Martin Hensch; Bergthóra Thorbjarnardóttir
Archive | 2010
Baerbel Langmann; Arnau Folch; Martin Hensch; Volker Matthias
Marine Geophysical Researches | 2006
C. Riedel; Ari Tryggvason; Bryndís Brandsdóttir; Torsten Dahm; R. Stéfansson; Martin Hensch; R. Böðvarsson; K. S. Vogfjord; S. Jakobsdottír; T. Eken; R. Herber; J. Holmjarn; M. Schnese; M. Thölen; B. Hofmann; B. Sigurdsson; S. Winter
Earth and Planetary Science Letters | 2018
Luigi Passarelli; Eleonora Rivalta; Sigurjón Jónsson; Martin Hensch; Sabrina Metzger; Steinunn S. Jakobsdóttir; Francesco Maccaferri; F. Corbi; Torsten Dahm
Earth and Planetary Science Letters | 2017
Michelle Parks; Elías Rafn Heimisson; Freysteinn Sigmundsson; Andrew Hooper; Kristin S. Vogfjord; Thóra Árnadóttir; Benedikt Ofeigsson; Sigrún Hreinsdóttir; Páll Einarsson; Magnús T. Gudmundsson; Thórdís Högnadóttir; Kristín Jónsdóttir; Martin Hensch; Marco Bagnardi; Stéphanie Dumont; Vincent Drouin; Karsten Spaans; Rósa Ólafsdóttir