Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Hussels is active.

Publication


Featured researches published by Martin Hussels.


Biochimica et Biophysica Acta | 2011

Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700

Eberhard Schlodder; Martin Hussels; Marianne Çetin; Navassard V. Karapetyan; Marc Brecht

Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques.


Biochemistry | 2011

Effect of Glycerol and PVA on the Conformation of Photosystem I

Martin Hussels; Marc Brecht

Single-molecule spectroscopy at cryogenic temperatures was used to examine the impact of buffer solution, glycerol/buffer mixtures (25% and 66%), and poly(vinyl alcohol) (PVA) films on the conformation of photosystem I (PSI) from Thermosynechoccocus elongatus. PSI holds a number of chromophores embedded at different places within the protein complex that show distinguishable fluorescence at low temperatures. The fluorescence emission from individual complexes shows inter- and intracomplex heterogeneity depending on the solution wherein PSI was dissolved. Statistical evaluation of spectra of a large number of complexes shows that the fluorescence emission of some of these chromophores can be used as sensors for their local nanoenvironment and some as probe for the conformation of the whole protein complex. Preparation in glycerol/buffer mixtures yields a high homogeneity for all chromophores, indicating a more compact protein conformation with less structural variability. In buffer solution a distinct heterogeneity of the chromophores is observed. PSI complexes in PVA show highly heterogeneous spectra as well as a remarkable blue shift of the fluorescence emission, indicating a destabilization of the protein complex. Photosystem I prepared in PVA cannot be considered fully functional, and conclusions drawn from experiments with PSI in PVA films are of questionable value.


Review of Scientific Instruments | 2012

Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures.

Martin Hussels; Alexander Konrad; Marc Brecht

The construction of a microscope with fast sample transfer system for single-molecule spectroscopy and microscopy at low temperatures using 2D/3D sample-scanning is reported. The presented construction enables the insertion of a sample from the outside (room temperature) into the cooled (4.2 K) cryostat within seconds. We describe the mechanical and optical design and present data from individual Photosystem I complexes. With the described setup numerous samples can be investigated within one cooling cycle. It opens the possibility to investigate biological samples (i) without artifacts introduced by prolonged cooling procedures and (ii) samples that require preparation steps like plunge-freezing or specific illumination procedures prior to the insertion into the cryostat.


Biochimica et Biophysica Acta | 2012

Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy

Marc Brecht; Martin Hussels; Eberhard Schlodder; Navassard V. Karapetyan

Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.


FEBS Letters | 2011

Evidence for direct binding of glycerol to photosystem I

Martin Hussels; Marc Brecht

The interaction between glycerol and photosystem I (PSI) was investigated using low temperature single‐molecule spectroscopy. PSI complexes were dissolved in three different solutions: in buffer solution, in 66% glycerol/buffer solution, and in 66% glycerol/buffer solution that was afterwards diluted by buffer; the final glycerol concentration was <1‰. Mean fluorescence spectra and intercomplex heterogeneity of PSI complexes in 66% glycerol/buffer solution and in the re‐diluted solution show high similarity, but differ from complexes in buffer solution indicating that the glycerol concentration is not the determining factor modifying the spectral properties. However, the exposure of PSI to a high glycerol concentration during sample preparation affects PSI and the effect is maintained if glycerol is removed from the solution.


Biochimica et Biophysica Acta | 2014

Spectroscopic properties of photosystem II core complexes from Thermosynechococcus elongatus revealed by single-molecule experiments

Marc Brecht; Sepideh Skandary; Julia Hellmich; Carina Glöckner; Alexander Konrad; Martin Hussels; Alfred J. Meixner; Athina Zouni; Eberhard Schlodder

In this study we use a combination of absorption, fluorescence and low temperature single-molecule spectroscopy to elucidate the spectral properties, heterogeneities and dynamics of the chlorophyll a (Chla) molecules responsible for the fluorescence emission of photosystem II core complexes (PS II cc) from the cyanobacterium Thermosynechococcus elongatus. At the ensemble level, the absorption and fluorescence spectra show a temperature dependence similar to plant PS II. We report emission spectra of single PS II cc for the first time; the spectra are dominated by zero-phonon lines (ZPLs) in the range between 680 and 705nm. The single-molecule experiments show unambiguously that different emitters and not only the lowest energy trap contribute to the low temperature emission spectrum. The average emission spectrum obtained from more than hundred single complexes shows three main contributions that are in good agreement with the reported bands F685, F689 and F695. The intensity of F695 is found to be lower than in conventional ensemble spectroscopy. The reason for the deviation might be due to the accumulation of triplet states on the red-most chlorophylls (e.g. Chl29 in CP47) or on carotenoids close to these long-wavelength traps by the high excitation power used in the single-molecule experiments. The red-most emitter will not contribute to the fluorescence spectrum as long as it is in the triplet state. In addition, quenching of fluorescence by the triplet state may lead to a decrease of long-wavelength emission.


Journal of Physical Chemistry B | 2015

Variation of exciton-vibrational coupling in photosystem II core complexes from Thermosynechococcus elongatus as revealed by single-molecule spectroscopy.

Sepideh Skandary; Martin Hussels; Alexander Konrad; Thomas Renger; Frank Müh; Martin Bommer; Athina Zouni; Alfred J. Meixner; Marc Brecht

The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang–Rhys factor) with high precision. The Huang–Rhys factors vary between 0.03 and 0.8. The values of the Huang–Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system.


Biochimica et Biophysica Acta | 2014

Effect of TMAO and betaine on the energy landscape of photosystem I

Jana B. Nieder; Martin Hussels; Robert Bittl; Marc Brecht

The accumulation of organic co-solvents in cells is a basic strategy for organisms from various species to increase stress tolerance in extreme environments. Widespread representatives of this class of co-solvents are trimethylamine-N-oxide (TMAO) and betaine; these small molecules are able to stabilize the native conformation of proteins and prevent their aggregation. Despite their importance, detailed experimental studies on the impact of these co-solvents on the energy landscape of proteins have not yet been carried out. We use single-molecule spectroscopy at cryogenic temperatures to examine the influence of these physiological relevant co-solvents on photosystem I (PSI) from Thermosynechococcus elongatus. In contrast to PSI ensemble spectra, which are almost unaffected by the addition of TMAO and betaine, statistical analysis of the fluorescence emission from individual PSI trimers yields insight into the interaction of the co-solvents with PSI. The results show an increased homogeneity upon addition of TMAO or betaine. The number of detectable zero-phonon lines (ZPLs) is reduced, indicating spectral diffusion processes with faster rates. In the framework of energy landscape model these findings indicate that co-solvents lead to reduced barrier heights between energy valleys, and thus efficient screening of protein conformations can take place.


Proceedings of SPIE | 2015

Polarization-dependent single-molecule spectroscopy on photosystem I

Sepideh Skandary; Alexander Konrad; Martin Hussels; Alfred J. Meixner; Marc Brecht

Single-molecule spectroscopy (SMS) at low temperature was used to study the spectral properties, heterogeneities and spectral dynamics of the chlorophyll a (Chl a) molecules responsible for the fluorescence emission of photosystem I (PS I). The fluorescence spectra of single PS I complexes are dominated by several red-shifted Chl a molecules categorized into red pools called C708 and C719. By polarization dependent measurements we demonstrate spectrally separate emissions corresponding to C708 and C719 in single PS I monomers and trimers. Moreover, we compared the results of SMS polarization dependent between monomeric and trimeric PS I complexes and give an estimation for the orientation between these red pools. As a consequence, we get new insight into the energy transfer towards and between the red Chl a molecules in PS I complexes.


Chemical Physics | 2012

Plasmonic interactions of photosystem I with Fischer patterns made of Gold and Silver

Marc Brecht; Martin Hussels; Jana B. Nieder; Hui Fang; Celine Elsässer

Collaboration


Dive into the Martin Hussels's collaboration.

Top Co-Authors

Avatar

Marc Brecht

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eberhard Schlodder

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Athina Zouni

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jana B. Nieder

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Glöckner

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge