Martin J. Baumann
Novozymes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin J. Baumann.
The Plant Cell | 2007
Martin J. Baumann; Jens M. Eklöf; Gurvan Michel; Åsa M. Kallas; Tuula T. Teeri; Mirjam Czjzek; Harry Brumer
High-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes were identified by structure–function studies of the recombinantly expressed enzymes in comparison with data for the strict xyloglucan endo-transglycosylase Ptt-XET16-34 from hybrid aspen (Populus tremula × Populus tremuloides). Production of the loop deletion variant Tm-NXG1-ΔYNIIG yielded an enzyme that was structurally similar to Ptt-XET16-34 and had a greatly increased transglycosylation:hydrolysis ratio. Comprehensive bioinformatic analyses of XTH gene products, together with detailed kinetic data, strongly suggest that xyloglucanase activity has evolved as a gain of function in an ancestral GH16 XET to meet specific biological requirements during seed germination, fruit ripening, and rapid wall expansion.
The Plant Cell | 2004
Patrik Johansson; Harry Brumer; Martin J. Baumann; Åsa M. Kallas; Hongbin Henriksson; Stuart Denman; Tuula T. Teeri; T. Alwyn Jones
Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure–function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-Å resolution. Even though the overall structure of PttXET16A is a curved β-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional β-strand and a short α-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues.
Journal of Biological Chemistry | 2006
Carlos Martinez-Fleites; Catarina I. P. D. Guerreiro; Martin J. Baumann; Edward J. Taylor; José A. M. Prates; Luís M. A. Ferreira; Carlos M. G. A. Fontes; Harry Brumer; Gideon J. Davies
The enzymatic degradation of the plant cell wall is central both to the natural carbon cycle and, increasingly, to environmentally friendly routes to biomass conversion, including the production of biofuels. The plant cell wall is a complex composite of cellulose microfibrils embedded in diverse polysaccharides collectively termed hemicelluloses. Xyloglucan is one such polysaccharide whose hydrolysis is catalyzed by diverse xyloglucanases. Here we present the structure of the Clostridium thermocellum xyloglucanase Xgh74A in both apo and ligand-complexed forms. The structures, in combination with mutagenesis data on the catalytic residues and the kinetics and specificity of xyloglucan hydrolysis reveal a complex subsite specificity accommodating seventeen monosaccharide moieties of the multibranched substrate in an open substrate binding terrain.
Enzyme and Microbial Technology | 2013
Leigh Murphy; Christina Bohlin; Martin J. Baumann; Søren N. Olsen; Trine Holst Sørensen; Lars Anderson; Kim Borch; Peter Westh
Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly CBH1), Cel6A (CBH2), Cel7B (EG1), Cel5A (EG2) and Cel12A (EG3), for their sensitivity to the products glucose and cellobiose. The strongest inhibition was found for Cel7A, which showed a 50% activity-loss in 19 mM cellobiose (IC(50)=19 mM). The other exoglucanase, Cel6A, was much less inhibited by cellobiose, but showed the highest sensitivity to glucose among all investigated enzymes. The endoglucanases Cel12A and Cel7B were moderately inhibited by cellobiose (IC(50)=60-80 mM), and weakly inhibited by glucose (IC(50)=350-380 mM). The highest resistance to both products was found for Cel5A, which retained about 75% of its activity at the highest investigated concentrations (respectively 65 mM cellobiose and 1000 mM glucose).
Biotechnology for Biofuels | 2011
Martin J. Baumann; Kim Borch; Peter Westh
BackgroundThe well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina) contains two cellobiohydolases (CBHs), cellobiohydrolase I (TrCel7A) and cellobiohydrolase II (TrCeI6A), that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in the conversion of biomass to fermentable sugars. However, the CHBs are notoriously slow and susceptible to inhibition, which presents a challenge for the commercial utilisation of biomass. The xylans and xylan fragments that are also present in the biomass have been suggested repeatedly as one cause of the reduced activity of CHBs. Yet, the extent and mechanisms of this inhibition remain poorly elucidated. Therefore, we studied xylan oligosaccharides (XOSs) of variable lengths with respect to their binding and inhibition of both TrCel7A and an enzyme variant without the cellulose-binding domain (CBM).ResultsWe studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity significantly, which suggests that XOSs may bind to the active site. Activity assays of TrCel7A clearly demonstrated the negative effect of the presence of XOSs on the turnover number.ConclusionsOn the basis of these binding data and a comparison of XOS inhibition of the activity of the two enzyme variants towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate.
Journal of Biological Chemistry | 2012
Leigh C. Murphy; Nicolaj Cruys-Bagger; Heidi Delcomyn Damgaard; Martin J. Baumann; Søren N. Olsen; Kim Borch; Søren Flensted Lassen; Matt Sweeney; Hirosuke Tatsumi; Peter Westh
The kinetics of cellulose hydrolysis have longbeen described by an initial fast hydrolysis rate, tapering rapidly off, leading to a process that takes days rather than hours to complete. This behavior has been mainly attributed to the action of cellobiohydrolases and often linked to the processive mechanism of this exo-acting group of enzymes. The initial kinetics of endo-glucanases (EGs) is far less investigated, partly due to a limited availability of quantitative assay technologies. We have used isothermal calorimetry to monitor the early time course of the hydrolysis of insoluble cellulose by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B, which reaches a maximal turnover of about 20 s−1 at 30 °C and conducts about 1200 catalytic cycles per enzyme molecule in the initial fast phase. For TrCel5A and TrCel12A the extent of the burst is 2–300 cycles per enzyme molecule. The availability of continuous data on EG activity allows an analysis of the mechanisms underlying the initial kinetics, and it is suggested that the slowdown is linked to transient inactivation of enzyme on the cellulose surface. We propose, therefore, that the frequency of structures on the substrate surface that cause transient inactivation determine the extent of the burst phase.
Proteins | 2009
Pekka Mark; Martin J. Baumann; Jens M. Eklöf; Fredrika Gullfot; Gurvan Michel; Åsa M. Kallas; Tuula T. Teeri; Harry Brumer; Mirjam Czjzek
Reorganization and degradation of the wall crosslinking and seed storage polysaccharide xyloglucan by glycoside hydrolase family 16 (GH16) endo‐transglycosylases and hydrolases are crucial to the growth of the majority of land plants, affecting processes as diverse as germination, morphogenesis, and fruit ripening. A high‐resolution, three‐dimensional structure of a nasturtium (Tropaeolum majus) endo‐xyloglucanase loop mutant, TmNXG1‐ΔYNIIG, with an oligosaccharide product bound in the negative active‐site subsites, has been solved by X‐ray crystallography. Comparison of this novel complex to that of the strict xyloglucan endo‐transglycosylase PttXET16‐34 from hybrid aspen (Populus tremula x tremuloides), previously solved with a xylogluco‐oligosaccharide bound in the positive subsites, highlighted key protein structures that affect the disparate catalytic activities displayed by these closely related enzymes. Combination of these “partial” active‐site complexes through molecular dynamics simulations in water allowed modeling of wild‐type TmNXG1, TmNXG1‐ΔYNIIG, and wild‐type PttXET16‐34 in complex with a xyloglucan octadecasaccharide spanning the entire catalytic cleft. A comprehensive analysis of these full‐length complexes underscored the importance of various loops lining the active site. Subtle differences leading to a tighter hydrogen bonding pattern on the negative (glycosyl donor) binding subsites, together with loop flexibility on the positive (glycosyl acceptor) binding subsites appear to favor hydrolysis over transglycosylation in GH16 xyloglucan‐active enzymes. Proteins 2009.
Biochemistry | 2008
Farid M. Ibatullin; Martin J. Baumann; Lionel Greffe; Harry Brumer
A library of phenyl beta-glycosides of xylogluco-oligosaccharides was synthesized via a chemoenzymatic approach to produce new, specific substrates for xyloglucanases. Tamarind xyloglucan was completely hydrolyzed to four, variably galactosylated component oligosaccharides based on Glc 4 backbones, using a Trichoderma endo-glucanase mixture. Oligosaccharide complexity could be further reduced by beta-galactosidase treament. Subsequent per- O-acetylation, alpha-bromination, phase-transfer glycosylation, and Zemplen deprotection yielded phenyl glycosides of XXXG and XLLG oligosaccharides with a broad range of aglycon p K a values. Kinetic and product analysis of the action of the archetypal plant endo-xyloglucanase, Tropaeolum majus NXG1, on these compounds indicated that formation of the glycosyl-enzyme intermediate was rate-limiting in the case of phenol leaving groups with p K a values of >7, leading exclusively to substrate hydrolysis. Conversely, substrates with aglycon p K a values of 5.4 gave rise to a significant amount of transglycosylation products, indicating a change in the relative rates of formation and breakdown of the glycosyl-enzyme intermediate for these faster substrates. Notably, comparison of the initial rates of XXXG-Ar and XLLG-Ar conversion indicated that catalysis by TmNXG1 was essentially insensitive to the presence of galactose in the negative subsites for all leaving groups. More broadly, analysis of a selection of enzymes from CAZy families GH 5, 12, and 16 indicated that the phenyl glycosides are substrates for anomeric configuration-retaining endo-xyloglucanases but are not substrates for strict xyloglucan endo-transglycosylases (XETs). The relative activities of the GH 5, 12, and 16 endo-xyloglucanases toward GGGG-CNP, XXXG-CNP, and XLLG-CNP reflected those observed using analogous high molar mass polysaccharides. These new chromogenic substrates may thus find wide application in the discovery, screening, and detailed kinetic analysis of new xyloglucan-active enzymes.
Biotechnology and Bioengineering | 2012
Nicolaj Cruys-Bagger; Guilin Ren; Hirosuke Tatsumi; Martin J. Baumann; Nikolaj Spodsberg; Heidi Delcomyn Andersen; Lo Gorton; Kim Borch; Peter Westh
An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM(-1) cm(-2)), low detection limit (25 nM), and fast response time (t(95%) ≈ 3 s) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH-biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β-anomer of cello-oligosaccharides and the approach were validated against HPLC. It is suggested that quantitative, real-time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose.
Analytical Biochemistry | 2010
Leigh Murphy; Martin J. Baumann; Kim Borch; Matt Sweeney; Peter Westh
The study of cellulolytic enzymes has traditionally been carried out using endpoint measurements by quantitation of reaction products using high-performance liquid chromatography (HPLC) or overall determination of produced reducing ends. To measure catalytic activity, model substrates such as solubilized cellulose derivates, soluble chromogenic, and fluorogenic oligomeric substrates are often employed even though they do not reflect the natural insoluble substrate hydrolysis. Thermochemical methods using, for example, isothermal titration calorimetry (ITC) yield data where the primary observable is heat production. This can be converted to the rate of reaction and allows direct and continuous monitoring of the hydrolysis of complex substrates. To overcome the low molar enthalpy of the hydrolysis of the glycosidic bond, which is typically on the order of -2.5 kJ mol(-1), an enzymatic signal amplification method has been developed to measure even slow hydrolytically active enzymes such as cellobiohydrolases. This method is explained in detail for the amplification of the heat signal by more than 130 times by using glucose oxidase and catalase. The kinetics of this complex coupled reaction system is thoroughly investigated, and the potential use to generate kinetic models of enzymatic hydrolysis of unmodified cellulosic substrates is demonstrated.