Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin J. McKeown is active.

Publication


Featured researches published by Martin J. McKeown.


Psychophysiology | 2000

Removing electroencephalographic artifacts by blind source separation

Tzyy-Ping Jung; Scott Makeig; Colin Humphries; Te-Won Lee; Martin J. McKeown; Vicente J. Iragui; Terrence J. Sejnowski

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.


Human Brain Mapping | 1998

Analysis of fMRI Data by Blind Separation Into Independent Spatial Components

Martin J. McKeown; Scott Makeig; Greg Brown; Tzyy-Ping Jung; Sandra S. Kindermann; Anthony J. Bell; Terrence J. Sejnowski

Current analytical techniques applied to functional magnetic resonance imaging (fMRI) data require a priori knowledge or specific assumptions about the time courses of processes contributing to the measured signals. Here we describe a new method for analyzing fMRI data based on the independent component analysis (ICA) algorithm of Bell and Sejnowski ([1995]: Neural Comput 7:1129–1159). We decomposed eight fMRI data sets from 4 normal subjects performing Stroop color‐naming, the Brown and Peterson word/number task, and control tasks into spatially independent components. Each component consisted of voxel values at fixed three‐dimensional locations (a component “map”), and a unique associated time course of activation. Given data from 144 time points collected during a 6‐min trial, ICA extracted an equal number of spatially independent components. In all eight trials, ICA derived one and only one component with a time course closely matching the time course of 40‐sec alternations between experimental and control tasks. The regions of maximum activity in these consistently task‐related components generally overlapped active regions detected by standard correlational analysis, but included frontal regions not detected by correlation. Time courses of other ICA components were transiently task‐related, quasiperiodic, or slowly varying. By utilizing higher‐order statistics to enforce successively stricter criteria for spatial independence between component maps, both the ICA algorithm and a related fourth‐order decomposition technique (Comon [1994]: Signal Processing 36:11–20) were superior to principal component analysis (PCA) in determining the spatial and temporal extent of task‐related activation. For each subject, the time courses and active regions of the task‐related ICA components were consistent across trials and were robust to the addition of simulated noise. Simulated movement artifact and simulated task‐related activations added to actual fMRI data were clearly separated by the algorithm. ICA can be used to distinguish between nontask‐related signal components, movements, and other artifacts, as well as consistently or transiently task‐related fMRI activations, based on only weak assumptions about their spatial distributions and without a priori assumptions about their time courses. ICA appears to be a highly promising method for the analysis of fMRI data from normal and clinical populations, especially for uncovering unpredictable transient patterns of brain activity associated with performance of psychomotor tasks. Hum. Brain Mapping 6:160–188, 1998.


Human Brain Mapping | 1998

Independent Component Analysis of fMRI Data: Examining the Assumptions

Martin J. McKeown; Terrence J. Sejnowski

Independent component analysis (ICA), which separates fMRI data into spatially independent patterns of activity, has recently been shown to be a suitable method for exploratory fMRI analysis. The validity of the assumptions of ICA, mainly that the underlying components are spatially independent and add linearly, was explored with a representative fMRI data set by calculating the log‐likelihood of observing each voxels time course conditioned on the ICA model. The probability of observing the time courses from white‐matter voxels was higher compared to other observed brain regions. Regions containing blood vessels had the lowest probabilities. The statistical distribution of probabilities over all voxels did not resemble that expected for a small number of independent components mixed with Gaussian noise. These results suggest the ICA model may more accurately represent the data in specific regions of the brain, and that both the activity‐dependent sources of blood flow and noise are non‐Gaussian. Hum. Brain Mapping 6:368–372, 1998.


Proceedings of the IEEE | 2001

Imaging brain dynamics using independent component analysis

Tzyy-Ping Jung; Scott Makeig; Martin J. McKeown; Anthony J. Bell; Te-Won Lee; Terrence J. Sejnowski

The analysis of electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings is important both for basic brain research and for medical diagnosis and treatment. Independent component analysis (ICA) is an effective method for removing artifacts and separating sources of the brain signals from these recordings. A similar approach is proving useful for analyzing functional magnetic resonance brain imaging (fMRI) data. In this paper, we outline the assumptions underlying ICA and demonstrate its application to a variety of electrical and hemodynamic recordings from the human brain.


Current Opinion in Neurobiology | 2003

Independent component analysis of functional MRI: what is signal and what is noise?

Martin J. McKeown; Lars Kai Hansen; Terrence J Sejnowsk

Many sources of fluctuation contribute to the functional magnetic resonance imaging (fMRI) signal, complicating attempts to infer those changes that are truly related to brain activation. Unlike methods of analysis of fMRI data that test the time course of each voxel against a hypothesized waveform, data-driven methods, such as independent component analysis and clustering, attempt to find common features within the data. This exploratory approach can be revealing when the brain activation is difficult to predict beforehand, such as with complex stimuli and internal shifts of activation that are not time-locked to an easily specified sensory or motor event. These methods can be further improved by incorporating prior knowledge regarding the temporal and spatial extent of brain activation.


NeuroImage | 2000

Detection of Consistently Task-Related Activations in fMRI Data with Hybrid Independent Component Analysis

Martin J. McKeown

fMRI data are commonly analyzed by testing the time course from each voxel against specific hypothesized waveforms, despite the fact that many components of fMRI signals are difficult to specify explicitly. In contrast, purely data-driven techniques, by focusing on the intrinsic structure of the data, lack a direct means to test hypotheses of interest to the examiner. Between these two extremes, there is a role for hybrid methods that use powerful data-driven techniques to fully characterize the data, but also use some a priori hypotheses to guide the analysis. Here we describe such a hybrid technique, HYBICA, which uses the initial characterization of the fMRI data from Independent Component Analysis and allows the experimenter to sequentially combine assumed task-related components so that one can gracefully navigate from a fully data-derived approach to a fully hypothesis-driven approach. We describe the results of testing the method with two artificial and two real data sets. A metric based on the diagnostic Predicted Sum of Squares statistic was used to select the best number of spatially independent components to combine and utilize in a standard regressional framework. The proposed metric provided an objective method to determine whether a more data-driven or a more hypothesis-driven approach was appropriate, depending on the degree of mismatch between the hypothesized reference function and the features in the data. HYBICA provides a robust way to combine the data-derived independent components into a data-derived activation waveform and suitable confounds so that standard statistical analysis can be performed.


Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378) | 1998

Removing electroencephalographic artifacts: comparison between ICA and PCA

Tzyy-Ping Jung; Colin Humphries; Te-Won Lee; Scott Makeig; Martin J. McKeown; Vicente J. Iragui; Terrence J. Sejnowski

Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals, and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of the independent component analysis (ICA) algorithm for performing blind source separation on linear mixtures of independent source signals. Our results show that ICA can effectively separate and remove contamination from a wide variety of artifact sources in EEG records with results comparing favourably to those obtained using principal component analysis (PCA).


IEEE Transactions on Medical Imaging | 2005

An information-theoretic criterion for intrasubject alignment of FMRI time series: motion corrected independent component analysis

Rui Liao; Jeffrey L. Krolik; Martin J. McKeown

A three-dimensional image registration method for motion correction of functional magnetic resonance imaging (fMRI) time-series, based on independent component analysis (ICA), is described. We argue that movement during fMRI data acquisition results in a simultaneous increase in the joint entropy of the observed time-series and a decrease in the joint entropy of a nonlinear function of the derived spatially independent components calculated by ICA. We propose this entropy difference as a reliable criterion for motion correction and refer to a method that maximizes this as motion-corrected ICA (MCICA). Specifically, a given motion-corrupted volume may be corrected by determining the linear combination of spatial transformations of the motion-corrupted volume that maximizes the proposed criterion. In essence, MCICA consists of designing an adaptive spatial resampling filter which maintains maximum temporal independence among the recovered components. In contrast with conventional registration methods, MCICA does not require registration of motion-corrupted volumes to a single reference volume which can introduce artifacts because corrections are applied without accounting for variability due to the task-related activation. Simulations demonstrate that MCICA is robust to activation level, additive noise, random motion in the reference volumes and the exact number of independent components extracted. When the method was applied to real data with minimal estimated motion, the method had little effect and, hence, did not introduce spurious changes in the data. However, in a data series from a motor fMRI experiment with larger motion, preprocessing the data with the proposed method resulted in the emergence of activation in primary motor and supplementary motor cortices. Although mutual information (MI) was not explicitly optimized, the MI between all subsequent volumes and the first one was consistently increased for all volumes after preprocessing the data with MCICA. We suggest MCICA represents a robust and reliable method for preprocessing of fMRI time-series corrupted with motion.


Journal of Sleep Research | 1998

A new method for detecting state changes in the EEG: exploratory application to sleep data

Martin J. McKeown; Colin Humphries; Peter Achermann; Alexander A. Borbély; Terrence Sejnowsk

A new statistical method is described for detecting state changes in the electroencephalogram (EEG), based on the ongoing relationships between electrode voltages at different scalp locations. An EEG sleep recording from one NREM‐REM sleep cycle from a healthy subject was used for exploratory analysis. A dimensionless function defined at discrete times ti, u(ti), was calculated by determining the log‐likelihood of observing all scalp electrode voltages under the assumption that the data can be modeled by linear combinations of stationary relationships between derivations. The u(ti), calculated by using independent component analysis, provided a sensitive, but non‐specific measure of changes in the global pattern of the EEG. In stage 2, abrupt increases in u(ti) corresponded to sleep spindles. In stages 3 and 4, low frequency (≈ 0.6 Hz) oscillations occurred in u(ti) which may correspond to slow oscillations described in cellular recordings and the EEG of sleeping cats. In stage 4 sleep, additional irregular very low frequency (≈ 0.05–0.2 Hz) oscillations were observed in u(ti) consistent with possible cyclic changes in cerebral blood flow or changes of vigilance and muscle tone. These preliminary results suggest that the new method can detect subtle changes in the overall pattern of the EEG without the necessity of making tenuous assumptions about stationarity.


Brain Topography | 1999

Spatially fixed patterns account for the spike and wave features in absence seizures.

Martin J. McKeown; Colin Humphries; Vincente Iragui; Terrence J. Sejnowski

Despite genetic, morphological and experimental in vivo data implying fixed abnormalities in patients with absence seizures, attempts to find highly consistent features in the 3-Hz spike-and-wave pattern recorded during sequential seizures from the same subject have been largely unsuccessful. We used a new data decomposition technique called Independent Component Analysis (ICA) to separate multiple spike-and-wave episodes in the EEG recorded from five subjects with absence seizures into multiple consistent components. Each component corresponded to a temporally-independent waveform and a fixed spatial distribution. Almost all components separated by the ICA algorithm had overlapping, largely frontal spatial distributions. The analysis unmasked 5-8 components from each subject that were consistently activated across all seizures, with no components detected that were selectively activated by one seizure and not another. The “spike” and “wave” features noted in the EEG of every subject were each separated by the ICA algorithm into two or more components. Other components were active only at the beginning of each seizure or were related to ongoing brain activity not directly related to the 3Hz spike-and-wave pattern. By contrast, randomly selected spatial patterns used for data decomposition resulted in components that were uninformative, similar to simply changing the montage for viewing the EEG. Our results suggest that despite previously described variability in the raw EEG, certain highly specific spatial distributions of activation are reproducible across seizures. These may reflect ictal and non-ictal brain activity consistently activating the same group of neurons.

Collaboration


Dive into the Martin J. McKeown's collaboration.

Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Scott Makeig

University of California

View shared research outputs
Top Co-Authors

Avatar

Tzyy-Ping Jung

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Bell

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Colin Humphries

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge