Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin J. Sullivan is active.

Publication


Featured researches published by Martin J. Sullivan.


Circulation | 2003

Exercise and Heart Failure A Statement From the American Heart Association Committee on Exercise, Rehabilitation, and Prevention

Ileana L. Piña; Carl S. Apstein; Gary J. Balady; Romualdo Belardinelli; Bernard R. Chaitman; Brian D. Duscha; Barbara J. Fletcher; Jerome L. Fleg; Jonathan N. Myers; Martin J. Sullivan

Heart failure (HF) may be defined as the inability of the heart to meet the demands of the tissues, which results in symptoms of fatigue or dyspnea on exertion progressing to dyspnea at rest. The inability to perform exercise without discomfort may be one of the first symptoms experienced by patients with HF and is often the principal reason for seeking medical care. Therefore, exercise intolerance is inextricably linked to the diagnosis of HF. It might be expected that a tight relationship would exist between indices of resting ventricular function and exercise capacity. Data indicate, however, that indices of resting ventricular function (such as ejection fraction [EF]) are only weakly correlated to exercise tolerance.1 Exercise intolerance is defined as the reduced ability to perform activities that involve dynamic movement of large skeletal muscles because of symptoms of dyspnea or fatigue. Many investigators have sought mechanisms to explain the source of exercise intolerance. The aims of this position statement are to review (1) factors that affect exercise tolerance, with specific emphasis on chronic HF due to systolic dysfunction; (2) data that support the role of exercise training in chronic systolic HF, including the risks and benefits; (3) data on exercise training in patients with HF due to diastolic dysfunction; and finally (4) the subgroups of patients with HF for which data are lacking, and (5) the subgroups of patients who should not be included in exercise training programs. We anticipate this report will stimulate appropriate use of exercise training in patients with HF when indicated and encourage further studies in those areas in which data are lacking. ### Cardiovascular The capacity for performing aerobic exercise depends on the ability of the heart to augment its output to the exercising muscles and the ability of these muscles to utilize oxygen from the delivered …


Circulation | 1990

Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure.

Martin J. Sullivan; H. J. Green; Frederick R. Cobb

Recent studies in patients with long-term heart failure have suggested that intrinsic abnormalities in skeletal muscle can contribute to the development of early lactic acidosis and fatigue during exercise. The present study provides an analysis of substrate and enzyme content, fiber typing, and capillarization in skeletal muscle biopsy samples obtained at rest from the vastus lateralis in 11 patients with long-term heart failure (left ventricular ejection fraction, 21 +/- 8%) and nine normal subjects. Patients demonstrated a reduced peak exercise oxygen consumption (13.0 +/- 3.3 ml/kg/min) when compared with normals (30.2 +/- 8.6 ml/kg/min, p less than 0.001) and had an accelerated rise in blood lactate levels during exercise. In mixed fiber skeletal muscle, total phosphorylase and glycolytic enzyme activities were not different in the two groups, whereas mitochondrial enzymes involved in terminal oxidation were decreased in patients as compared with normal subjects as indicated by reductions in succinate dehydrogenase (51 +/- 15 vs. 81 +/- 17 microM/g protein/min, p less than 0.001) and citrate synthetase (26 +/- 7 vs. 43 +/- 20 microM/g protein/min, p less than 0.05). 3-Hydroxyacyl-CoA-dehydrogenase, an important enzyme mediating beta-oxidation of fatty acids, was also reduced in patients as compared with normals (18 +/- 7 vs. 27 +/- 10 microM/g protein/min, p less than 0.05). There was no difference in high-energy phosphagens or lactate concentration of mixed muscle in the two groups, whereas glycogen content was decreased in patients (262 +/- 29 vs. 298 +/- 35 microM glucosyl units/kg dry wt, p = 0.01). Patients demonstrated a reduced percentage of slow twitch type I fibers (36 +/- 7% vs. 52 +/- 22%, p less than 0.05) and had a higher percentage of type IIb fast twitch fibers (24 +/- 9% vs. 11 +/- 12%, p = 0.02), which were smaller than the type IIb fibers seen in normal subjects (p less than 0.05). In patients, the number of capillaries per fiber was decreased for type I and type IIa fibers (both, p less than 0.03), but the ratio of capillaries to cross-sectional fiber area was not different for the two groups. These data demonstrate major alterations in skeletal muscle histology and biochemistry in patients with long-term heart failure, including fiber atrophy, a decrease in percentage of composition of type I fibers, and an increase in type IIb fibers accompanied by a decrease in oxidative enzyme capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation | 1988

Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects.

Martin J. Sullivan; Michael B. Higginbotham; Frederick R. Cobb

We studied the effects of exercise training in patients with chronic heart failure attributed to left ventricular dysfunction (ejection fraction, 24 +/- 10%). Twelve ambulatory patients with stable symptoms underwent 4-6 months of conditioning by exercising 4.1 +/- 0.6 hr/wk at a heart rate corresponding to 75% of peak oxygen consumption. Before and after training, patients underwent maximal bicycle exercise testing with direct measurement of central hemodynamic, leg blood flow, and metabolic responses. Exercise training resulted in a decrease in heart rate at rest and submaximal exercise and a 23% increase in peak oxygen consumption from 16.8 +/- 3.8 to 20.6 +/- 4.7 ml/kg/min (p less than 0.01). Heart rate, arterial lactate, and respiratory exchange ratio were unchanged at peak exercise after training. Maximal cardiac output tended to increase from 8.9 +/- 2.7 to 9.9 +/- 3.2 1/min and contributed to improved peak oxygen consumption in some patients, although this change did not reach statistical significance (p = 0.13). Rest and exercise measurements of left ventricular ejection fraction, left ventricular end-diastolic volume, and left ventricular end-systolic volume were unchanged. Right atrial, pulmonary arterial, pulmonary capillary wedge, and systemic arterial pressures were not different after training. Training induced several important peripheral adaptations that contributed to improved exercise performance. At peak exercise, systemic arteriovenous oxygen difference increased from 13.1 +/- 1.4 to 14.6 +/- 2.3 ml/dl (p less than 0.05). This increase was associated with an increase in peak-exercise leg blood flow from 2.5 +/- 0.7 to 3.0 +/- 0.8 l/min (p less than 0.01) and an increase in leg arteriovenous oxygen difference from 14.5 +/- 1.3 to 16.1 +/- 1.9 ml/dl (p = 0.07). Arterial and femoral venous lactate levels were markedly reduced during submaximal exercise after training, even though cardiac output and leg blood flow were unchanged at these workloads. Thus, ambulatory patients with chronic heart failure can achieve a significant training effect from long-term exercise. Peripheral adaptations, including an increase in peak blood flow to the exercising leg, played an important role in improving exercise tolerance.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of the American College of Cardiology | 1991

Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: Failure of the Frank-Starling mechanism☆

Dalane W. Kitzman; Michael B. Higginbotham; Frederick R. Cobb; Khalid H. Sheikh; Martin J. Sullivan

Invasive cardiopulmonary exercise testing was performed in 7 patients who presented with congestive heart failure, normal left ventricular ejection fraction and no significant coronary or valvular heart disease and in 10 age-matched normal subjects. Compared with the normal subjects, patients demonstrates severe exercise intolerance with a 48% reduction in peak oxygen consumption (11.6 +/- 4.0 versus 22.7 +/- 6.1 ml/kg per min; p less than 0.001), primarily due to a 41% reduction in peak cardiac index (4.2 +/- 1.4 versus 7.1 +/- 1.1 liters/min per m2; p less than 0.001). In patients compared with normal subjects, peak left ventricular stroke volume index (34 +/- 9 versus 46 +/- 7 ml/min per m2; p less than 0.01) and end-diastolic volume index (56 +/- 14 versus 68 +/- 12 ml/min per m2; p less than 0.08) were reduced, whereas peak ejection fraction and end-systolic volume index were not different. In patients, the change in end-diastolic volume index during exercise correlated strongly with the change in stroke volume index (r = 0.97; p less than 0.0001) and cardiac index (r = 0.80; p less than 0.03). Pulmonary wedge pressure was markedly increased at peak exercise in patients compared with normal subjects (25.7 +/- 9.1 versus 7.1 +/- 4.4 mm Hg; p less than 0.0001). Patients demonstrated a shift of the left ventricular end-diastolic pressure-volume relation upward and to the left at rest. Increases in left ventricular filling pressure during exercise were not accompanied by increases in end-diastolic volume, indicating a limitation to left ventricular filling.(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation | 1989

Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure.

Martin J. Sullivan; J D Knight; Michael B. Higginbotham; Frederick R. Cobb

We studied the central hemodynamic, leg blood flow, and metabolic responses to maximal upright bicycle exercise in 30 patients with chronic heart failure attributable to severe left ventricular dysfunction (ejection fraction, 24 +/- 8%) and in 12 normal subjects. At peak exercise, patients demonstrated reduced oxygen consumption (15.1 +/- 4.8 vs. 32.1 +/- 9.9 ml/kg/min, p less than 0.001), cardiac output (8.7 +/- 3.2 vs. 18.6 +/- 4.4 l/min, p less than 0.001), and mean systemic arterial blood pressure (116 +/- 15 vs. 135 +/- 13 mm Hg, p less than 0.01) compared with normal subjects. Leg blood flow was decreased in patients versus normal subjects at rest and matched submaximal work rates and maximal exercise (2.1 +/- 1.9 vs. 6.4 +/- 1.4 l/min, all p less than 0.01). Mean systemic arterial blood pressure was no different in the two groups at rest or at matched submaximal work rates, whereas leg vascular resistance was higher in patients compared with normal subjects at rest, submaximal, and maximal exercise (all p less than 0.01). Although nonleg blood flow was decreased at rest in patients, it did not decrease significantly during exercise in either group. Peak exercise leg blood flow was related to peak exercise cardiac output in patients (r = 0.66, p less than 0.01) and normal subjects (r = 0.67, p less than 0.01). In patients, leg vascular resistance was not related to mean arterial blood pressure, pulmonary capillary wedge pressure, arterial catecholamines, arterial lactate, or femoral venous pH at rest or during exercise. Compared with normal subjects during submaximal exercise, patients demonstrated increased leg oxygen extraction and lactate production accompanied by decreased leg oxygen consumption. Thus, in patients with chronic heart failure compared with normal subjects, skeletal muscle perfusion is decreased at rest and during submaximal and maximal exercise, and local vascular resistance is increased. Our data indicate that nonleg blood flow and arterial blood pressure were preferentially maintained during exercise at the expense of leg hypoperfusion in our patients. This was associated with decreased leg oxygen utilization and increased leg oxygen extraction when compared to normal subjects, providing further evidence that reduced perfusion of skeletal muscle is important in causing early anaerobic skeletal muscle metabolism during exercise in subjects with this disorder.(ABSTRACT TRUNCATED AT 400 WORDS)


Circulation | 1988

Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities.

Martin J. Sullivan; Michael B. Higginbotham; Frederick R. Cobb

This study was designed to determine the pathophysiologic basis of increased exercise ventilation in the presence of chronic heart failure. Sixty-four ambulatory patients with chronic heart failure and 38 age-matched normal control subjects performed exercise according to identical staged, symptom-limited bicycle exercise protocols with measurement of hemodynamic, ventilatory, and metabolic responses. Compared with normal subjects, ventilation and the ratio of ventilation to CO2 production (Ve/VCO2), and pulmonary capillary wedge pressure were elevated in patients at rest and during exercise. The ratio of pulmonary dead space to tidal volume (Vd/Vt) also was elevated in the heart failure group at rest and during exercise and was closely related to Ve/VCO2 (all r greater than .72, p less than .001). Rest and exercise arterial PCO2 regulation was normal in patients. Peak exercise Ve/VCO2 did not correlate with pulmonary vascular pressures, but was inversely related to cardiac output (r = -.49, p less than .001). Thus, neurohumoral ventilatory control mechanisms are intact in patients with chronic heart failure and act to maintain normal PaCO2 levels in the face of increased pulmonary dead space. Activation of abnormal reflexes due to hemodynamic derangements during exercise are not important in determining ventilation in the presence of chronic heart failure. The demonstration of a correlation between decreased cardiac output and increased ventilation in the patient group suggests that attenuated pulmonary perfusion may play a role in causing exercise hyperpnea in the presence of chronic heart failure by producing ventilation perfusion abnormalities and thereby increasing physiologic pulmonary dead space.


Circulation | 1989

Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance.

Martin J. Sullivan; Michael B. Higginbotham; Frederick R. Cobb

We have recently demonstrated that exercise training can induce important hemodynamic and metabolic adaptations in patients with chronic heart failure due to severe left ventricular dysfunction. This study examines the accompanying changes in submaximal exercise performance and the ventilatory response to exercise in these patients. Before and after 16-24 weeks of exercise training, subjects underwent two symptom-limited bicycle exercise tests, one with an incremental graded workload, and one with a constant workload that represented 79 +/- 11% of the pretraining peak oxygen consumption. Breath-by-breath expired gas analysis was performed continuously during each test, and central hemodynamic, leg blood flow, and blood lactate measurements were obtained during the incremental protocol. The ventilatory anaerobic threshold was determined during the incremental exercise study from coplotted breath-by-breath ventilatory data with standard criteria by observers who were unaware of patient identity or training status. As previously reported, exercise training increased peak oxygen consumption by 23% from 16.8 +/- 3.8 to 20.6 +/- 4.7 ml/kg/min and reduced blood lactate levels during submaximal exercise. The training-induced decrease in lactate accumulation was accompanied by a decrease in carbon dioxide production, respiratory exchange ratio, and ventilation during submaximal exercise. The ventilatory anaerobic threshold was delayed from 284 +/- 43 to 352 +/- 91 seconds of exercise (p = 0.02), and it occurred at an increased oxygen consumption (10.1 +/- 1.2 vs. 12.1 +/- 2.6 ml/kg/min, p = 0.01). Exercise duration during the constant workload protocol increased from 938 +/- 410 to 1,429 +/- 691 seconds (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation | 1991

Altered skeletal muscle metabolic response to exercise in chronic heart failure. Relation to skeletal muscle aerobic enzyme activity.

Martin J. Sullivan; H. J. Green; Frederick R. Cobb

BackgroundExertional fatigue, which frequently limits exercise in patients with chronic heart failure, is associated with early anaerobic metabolism in skeletal muscle. The present study was designed to examine the skeletal muscle metabolic response to exercise in this disorder and determine the relation of reduced muscle blood flow and skeletal muscle biochemistry and histology to the early onset of anaerobic metabolism in patients. Methods and ResultsWe evaluated leg blood flow, blood lactate, and skeletal muscle metabolic responses (by vastus lateralis biopsies) during upright bicycle exercise in 11 patients with chronic heart failure (ejection fraction 21 ± 8%) and nine normal subjects. In patients compared to normal subjects, peak exercise oxygen consumption was decreased (13.0 + 3.3 ml/kg/min versus 30.2 + 8.6 ml/kg/min, p < 0.01), whereas peak respiratory exchange ratio and femoral venous oxygen content were not different (both p > 0.25), indicating comparable exercise end points. At rest in patients versus normals, there was a reduction in the activity of hexokinase (p = 0.08), citrate sythetase (p < 0.02), succinate dehydrogenase (p = 0.0007), and 3-hydroxyacyl CoA dehydrogenase (p = 0.04). In patients, leg blood flow was decreased at rest, submaximal, and maximal exercise when compared to normal subjects (all p < 0.05), and blood lactate accumulation was accelerated. In patients, during submaximal exercise blood lactate levels were not closely related to leg blood flow but were inversely related to rest citrate synthetase activity in skeletal muscle (r = −0.74, p < 0.05). At peak exercise there were no intergroup differences in skeletal muscle glycolytic intermediates, adenosine nucleotides, or glycogen, whereas in patients compared to normal subjects less lactate accumulation and phosphocreatine depletion were noted (both p < 0.05), suggesting that factors other than the magnitude of phosphocreatine depletion or lactate accumulation may influence skeletal muscle fatigue in this disorder. ConclusionsThe results of the present study suggest that in patients with chronic heart failure reduced aerobic activity in skeletal muscle plays an important role in mediating the early onset of anaerobic metabolism during exercise. Our findings are consistent with the concept that reduced aerobic enzyme activity in skeletal muscle is, in part, responsible for determining exercise tolerance and possibly the response to chronic interventions in patients with chronic heart failure.


Progress in Cardiovascular Diseases | 1995

Exercise intolerance in patients with chronic heart failure

Martin J. Sullivan; Mary Hawthorne

Patients with chronic heart failure (CHF) experience significant morbidity because of dyspnea and fatigue with activities of daily living. Although central hemodynamic abnormalities are the hallmark of this disorder, investigators have not shown a relationship between left ventricular ejection fraction or exercise pulmonary capillary wedge pressure and exercise intolerance in this disorder. Recent studies have focused on the contributions of pulmonary abnormalities and alterations in peripheral vasomotor control and skeletal muscle in exercise intolerance in this disorder. Early anaerobic metabolism occurs in patients with CHF and appears to be caused by a combination of reduced skeletal muscle blood flow and decreased aerobic enzyme content in skeletal muscle. Atrophy in skeletal muscle and alterations in skeletal muscle fiber typing are accompanied by alterations in contractile function in skeletal muscle. These results suggest that exercise intolerance in patients with CHF is multifactorial, and that research efforts must consider central hemodynamic abnormalities, pulmonary abnormalities, and alterations in peripheral blood flow and skeletal muscle biochemistry and histology. The present review will explore current research in this area and develop a model for understanding exercise intolerance in CHF.


Journal of the American College of Cardiology | 1999

Capillary density of skeletal muscle: A contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations

Brian D. Duscha; William E. Kraus; Steven J. Keteyian; Martin J. Sullivan; H. J. Green; Fred Schachat; Anne M. Pippen; Clinton A. Brawner; Jason M. Blank; Brian H. Annex

OBJECTIVES The study was conducted to determine if the capillary density of skeletal muscle is a potential contributor to exercise intolerance in class II-III chronic heart failure (CHF). BACKGROUND Previous studies suggest that abnormalities in skeletal muscle histology, contractile protein content and enzymology contribute to exercise intolerance in CHF. METHODS The present study examined skeletal muscle biopsies from 22 male patients with CHF compared with 10 age-matched normal male control patients. Aerobic capacities, myosin heavy chain (MHC) isoforms, enzymes, and capillary density were measured. RESULTS The patients with CHF demonstrated a reduced peak oxygen consumption when compared to controls (15.0+/-2.5 vs. 19.8+/-5.0 ml x kg(-1) x min(-1), p <0.05). Using cell-specific antibodies to directly assess vascular density, there was a reduction in capillary density in CHF measured as the number of endothelial cells/fiber (1.42+/-0.28 vs. 1.74+/-0.35, p = 0.02). In CHF, capillary density was inversely related to maximal oxygen consumption (r = 0.479, p = 0.02). The MHC IIx isoform was found to be higher in patients with CHF versus normal subjects (28.5+/-13.6 vs. 19.5+/-9.4, p <0.05). CONCLUSIONS There was a significant reduction in microvascular density in patients with CHF compared with the control group, without major differences in other usual histologic and biochemical aerobic markers. The inverse relationship with peak oxygen consumption seen in the CHF group suggests that a reduction in microvascular density of skeletal muscle may precede other skeletal muscle alterations and play a critical role in the exercise intolerance characteristic of patients with CHF.

Collaboration


Dive into the Martin J. Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. J. Green

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge