Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin J. T. Reaney is active.

Publication


Featured researches published by Martin J. T. Reaney.


Natural Product Reports | 2013

Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature

Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Bioresource Technology | 2001

Preparation and characterization of bio-diesels from various bio-oils.

X. Lang; Ajay K. Dalai; Narendra N. Bakhshi; Martin J. T. Reaney; P.B Hertz

Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.


Journal of Nutrition | 2008

Trans-11 Vaccenic Acid Dietary Supplementation Induces Hypolipidemic Effects in JCR:LA-cp Rats

Ye Wang; Jing Lu; Megan R. Ruth; Susan Goruk; Martin J. T. Reaney; David R. Glimm; Donna F. Vine; Catherine J. Field; Spencer D. Proctor

Trans-11 vaccenic acid [VA; 18:1(n-9)] is a positional and geometric isomer of oleic acid and is the precursor to conjugated linoleic acid (CLA) in humans. Despite VA being the predominant trans monoene in ruminant-derived lipids, very little is known about its nutritional bioactivity, particularly in conditions of chronic metabolic disorders, including obesity, insulin resistance, and/or dyslipidemia. The aim of this study was to assess the potential of VA to improve dyslipidemia, insulin sensitivity, or inflammatory status in obese and insulin-resistant JCR:LA-cp rats. The obese rats and age-matched lean littermates were fed a control diet or a control diet supplemented with 1.5% (wt:wt) VA for a period of 3 wk. The incorporation of VA and subsequent conversion to CLA in triglyceride was measured in adipose tissue. Glucose and insulin metabolism were assessed via a conscious adapted meal tolerance test procedure. Plasma lipids as well as serum inflammatory cytokine concentrations were measured by commercially available assays. VA supplementation did not result in any observable adverse health effects in either lean or obese JCR:LA-cp rats. After 3 wk of feeding, body weight, food intake, and glucose/insulin metabolism did not differ between VA-supplemented and control groups. The incorporation of VA and CLA into adipose triglycerides in obese rats fed VA increased by 1.5-fold and 6.5-fold, respectively, compared with obese rats fed the control diet. The most striking effect was a 40% decrease (P < 0.05) in fasting triglyceride concentrations in VA-treated obese rats relative to obese controls. Serum Il-10 concentration was decreased by VA, regardless of genotype (P < 0.05). In conclusion, short-term dietary supplementation of 1.5% VA did not result in any detrimental metabolic effects in JCR:LA-cp rats. In contrast, dietary VA had substantial hypo-triglyceridemic effects, suggesting a new bioactivity of this fatty acid that is typically found in ruminant-derived food products.


Journal of Nutrition | 2009

Trans-11 Vaccenic Acid Reduces Hepatic Lipogenesis and Chylomicron Secretion in JCR:LA-cp Rats

Ye Wang; M. Miriam Jacome-Sosa; Megan R. Ruth; Susan Goruk; Martin J. T. Reaney; David R. Glimm; David C. Wright; Donna F. Vine; Catherine J. Field; Spencer D. Proctor

Trans-11 vaccenic acid (VA) is the predominant trans isomer in ruminant fat and a major precursor to the endogenous synthesis of cis9,trans11-conjugated linoleic acid in humans and animals. We have previously shown that 3-wk VA supplementation has a triglyceride (TG)-lowering effect in a rat model of dyslipidemia, obesity, and metabolic syndrome (JCR:LA-cp rats). The objective of this study was to assess the chronic effect (16 wk) of VA on lipid homeostasis in both the liver and intestine in obese JCR:LA-cp rats. Plasma TG (P < 0.001), total cholesterol (P < 0.001), LDL cholesterol (P < 0.01), and nonesterified fatty acid concentrations, as well as the serum haptoglobin concentration, were all lower in obese rats fed the VA diet compared with obese controls (P < 0.05). In addition, there was a decrease in the postprandial plasma apolipoprotein (apo)B48 area under the curve (P < 0.05) for VA-treated obese rats compared with obese controls. The hepatic TG concentration and the relative abundance of fatty acid synthase and acetyl-CoA carboxylase proteins were all lower (P < 0.05) in the VA-treated group compared with obese controls. Following acute gastrointestinal infusion of a VA-triolein emulsion in obese rats that had been fed the control diet for 3 wk, the TG concentration was reduced by 40% (P < 0.05) and the number of chylomicron (CM) particles (apoB48) in nascent mesenteric lymph was reduced by 30% (P < 0.01) relative to rats infused with a triolein emulsion alone. In conclusion, chronic VA supplementation significantly improved dyslipidemia in both the food-deprived and postprandial state in JCR:LA-cp rats. The appreciable hypolipidemic benefits of VA may be attributed to a reduction in both intestinal CM and hepatic de novo lipogenesis pathways.


Phytochemistry | 1992

Metabolism of (+)-abscisic acid to (+)-7′-hydroxyabscisic acid by bromegrass cell cultures

Cheryl R. Hampson; Martin J. T. Reaney; Garth D. Abrams; Suzanne R. Abrams; Lawrence V. Gusta

Abstract 7′-Hydroxyabscisic acid was isolated from the medium of smooth bromegrass ( Bromus inermis Leyss.) cell suspension cultures supplied with either (±)- or natural (+)-abscisic acid, and the identity of the metabolite confirmed by 1 H NMR. Analysis of the methyl esters of the metabolite by chiral HPLC showed only the (+) enantiomer of 7′- hydroxyabscisic acid to be present in the medium of cultures fed (+)-abscisic acid. In cultures treated with (±)-abscisic acid, the (−) enantiomer of the metabolite is formed from the (−)-abscisic acid component of the racemic mixture supplied.


Nutrition & Metabolism | 2010

Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR:LA-cp rat

M. Miriam Jacome-Sosa; Jing Lu; Ye Wang; Megan R. Ruth; David C. Wright; Martin J. T. Reaney; Jianheng Shen; Catherine J. Field; Donna F. Vine; Spencer D. Proctor

BackgroundConjugated linoleic acid (cis-9, trans-11 CLA) and trans-11 vaccenic acid (VA) are found naturally in ruminant-derived foods. CLA has been shown to have numerous potential health related effects and has been extensively investigated. More recently, we have shown that VA has lipid-lowering properties associated with reduced hepatic lipidogenesis and chylomicron secretion in the JCR:LA-cp rat. The aim of this study was to evaluate potential additional hypolipidemic effects of purified forms of CLA and VA in an animal model of the metabolic syndrome (the JCR:LA-cp rat).MethodsTwenty four obese JCR:LA-cp rats were randomized and assigned to one of three nutritionally adequate iso-caloric diets containing 1% w/w cholesterol and 15% w/w fat for 16 wk: 1) control diet (CD), 2) 1.0% w/w cis-9, trans-11 CLA (CLA), 3) 1.0% w/w VA and 1% w/w cis-9, trans-11 CLA (VA+CLA). Lean rats were fed the CD to represent normolipidemic conditions.ResultsFasting plasma triglyceride (TG), total cholesterol and LDL-cholesterol concentrations were reduced in obese rats fed either the CLA diet or the VA+CLA diet as compared to the obese control group (p < 0.05, p < 0.001; p < 0.001, p < 0.01; p < 0.01, p < 0.001, respectively). The VA+CLA diet reduced plasma TG and LDL-cholesterol to the level of the normolipidemic lean rats and further decreased nonesterified fatty acids compared to the CLA diet alone. Interestingly, rats fed the VA+CLA diet had a higher food intake but lower body weight than the CLA fed group (P < 0.05). Liver weight and TG content were lower in rats fed either CLA (p < 0.05) or VA+CLA diets (p < 0.001) compared to obese control, consistent with a decreased relative protein abundance of hepatic acetyl-CoA carboxylase in both treatment groups (P < 0.01). The activity of citrate synthase was increased in liver and adipose tissue of rats fed, CLA and VA+CLA diets (p < 0.001) compared to obese control, suggesting increased mitochondrial fatty acid oxidative capacity.ConclusionWe demonstrate that the hypolipidemic effects of chronic cis-9, trans-11 CLA supplementation on circulating dyslipidemia and hepatic steatosis are enhanced by the addition of VA in the JCR:LA-cp rat.


Plant Physiology | 1994

Effects of Abscisic Acid Metabolites and Analogs on Freezing Tolerance and Gene Expression in Bromegrass (Bromus inermis Leyss) Cell Cultures.

Albert J. Robertson; Martin J. T. Reaney; Ronald W. Wilen; Nancy Lamb; Suzanne R. Abrams; Lawrence V. Gusta

Optical isomers and racemic mixtures of abscisic acid (ABA) and the ABA metabolites abscisyl alcohol (ABA alc), abscisyl aldehyde (ABA ald), phaseic acid (PA), and 7[prime]hydroxyABA (7[prime]OHABA) were studied to determine their effects on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell-suspension cultures. A dihydroABA analog (DHABA) series that cannot be converted to PA was also investigated. Racemic ABA, (+)-ABA, ([plus or minus])-DHABA, and (+)-DHABA were the most active in inducing freezing tolerance, (-)-ABA, ([plus or minus])-7[prime]OHBA, (-)-DHABA, ([plus or minus])-ABA ald, and ([plus or minus])-ABA alc had a moderate effect, and PA was inactive. If the relative cellular water content decreased below 82%, dehydrin gene expression increased. Except for (-)-ABA, increased expression of dehydrin genes and increased accumulation of responsive to ABA (RAB) proteins were linked to increased levels of frost tolerance. PA had no effect on the induction of RAB proteins; however, ([plus or minus])- and (+)-DHABA were both active, which suggests that PA is not involved in freezing tolerance. Both (+)-ABA and (-)-ABA induced dehydrin genes and the accumulation of RAB proteins to similar levels, but (-)-ABA was less effective than (+)-ABA at increasing freezing tolerance. The (-)-DHABA analog was inactive, implying that the ring double bond is necessary in the (-) isomers for activating an ABA response.


Journal of Nutritional Biochemistry | 2014

Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome

M. Miriam Jacome-Sosa; Faye Borthwick; Rabban Mangat; Richard R. E. Uwiera; Martin J. T. Reaney; Jianheng Shen; Ariel D. Quiroga; René L. Jacobs; Richard Lehner; Spencer D. Proctor

Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats.


Journal of Agricultural and Food Chemistry | 2012

Identification and Quantification of Cyclolinopeptides in Five Flaxseed Cultivars

Bo Gui; Youn Young Shim; Raju Datla; Patrick S. Covello; Sandra Stone; Martin J. T. Reaney

Cyclolinopeptides are a group of naturally occurring hydrophobic cyclic peptides found in flaxseed and flax oil that have immunosuppressive activity. This study describes the measurement of flaxseed cyclolinopeptide concentrations using an internal standard HPLC method. In addition, the concentration of cyclolinopeptides in the seed of Canadian flax cultivars grown at two locations over two years is reported. The data are consistent with the formation of flaxseed cyclolinopeptides from two ribosome-derived precursors. Each precursor protein includes the sequences corresponding to three cyclolinopeptides from which those cyclolinopeptides are presumably derived by precursor processing. The concentrations of cyclolinopeptides C and E, which are encoded by the same gene sequence, are highly correlated, and the concentrations of cyclolinopeptides D, F, and G, which are encoded by a second gene sequence, are also highly correlated. The strong correlation between the cyclolinopeptides arising from the same gene may prove to be important in understanding how peptide concentration is controlled. Additional research may lead to approaches to improve flax either as a platform for peptide production or as a source of oil with improved drying properties and flavor.


Molecular Nutrition & Food Research | 2012

The intestinal bioavailability of vaccenic acid and activation of peroxisome proliferator‐activated receptor‐α and ‐γ in a rodent model of dyslipidemia and the metabolic syndrome

Ye Wang; Maria M. Jacome-Sosa; Megan R. Ruth; Yan Lu; Jianheng Shen; Martin J. T. Reaney; Shannon L. Scott; Michael E. R. Dugan; Hope D. Anderson; Catherine J. Field; Spencer D. Proctor; Donna F. Vine

SCOPE Evidence suggests a neutral to beneficial role of certain trans fatty acids (TFA) from natural ruminant sources. Trans11-18:1 (vaccenic acid, VA), the most predominant ruminant TFA and a precursor to conjugated linoleic acid, has been shown to improve atherogenic dyslipidemia and symptoms of hepatic steatosis in animal models. The objective of this study was to assess the intestinal bioavailability of various VA sources including synthetic free fatty acid (FFA) and natural ruminant triglyceride forms, as well as the mechanistic pathways that mediate VAs bioactivity. METHODS AND RESULTS VA acts as a partial agonist to both peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ in vitro, with similar affinity compared to commonly known PPAR agonists. It was further confirmed that VA at 30 and 100 μM concentrations suppressed cardiomyocyte hypertrophy vitro in a PPAR-α- and PPAR-γ-dependent manner. In vivo, feeding of VA (1%, w/w) resulted in increased mRNA and protein expression of PPAR-γ in the mucosa of JCR:LA-cp rats, a model of the metabolic syndrome (p < 0.01 and p < 0.05, respectively) compared to control. In addition, VA from a triglyceride source had greater intestinal bioavailability in vivo compared to VA provided in an FFA form (p < 0.01). CONCLUSION The activation of PPAR-α- and PPAR-γ-dependent pathways provides a mechanistic explanation of how VA improves blood lipids and related metabolic disorders during conditions of hyperlipidemia. This report also supports the consideration of differential reporting of industrially produced versus natural TFA on food nutrient labels.

Collaboration


Dive into the Martin J. T. Reaney's collaboration.

Top Co-Authors

Avatar

Youn Young Shim

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jianheng Shen

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence V. Gusta

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahram Emami

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil D. Westcott

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge