Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Janz is active.

Publication


Featured researches published by Martin Janz.


Journal of Experimental Medicine | 2004

c-FLIP Mediates Resistance of Hodgkin/Reed-Sternberg Cells to Death Receptor–induced Apoptosis

Stephan Mathas; Andreas Lietz; Ioannis Anagnostopoulos; Franziska Hummel; Burkhard Wiesner; Martin Janz; Franziska Jundt; Burkhard Hirsch; Korinna Jöhrens-Leder; Hans-Peter Vornlocher; Kurt Bommert; Harald Stein; Bernd Dörken

Resistance to death receptor–mediated apoptosis is supposed to be important for the deregulated growth of B cell lymphoma. Hodgkin/Reed-Sternberg (HRS) cells, the malignant cells of classical Hodgkins lymphoma (cHL), resist CD95-induced apoptosis. Therefore, we analyzed death receptor signaling, in particular the CD95 pathway, in these cells. High level CD95 expression allowed a rapid formation of the death-inducing signaling complex (DISC) containing Fas-associated death domain–containing protein (FADD), caspase-8, caspase-10, and most importantly, cellular FADD-like interleukin 1β–converting enzyme-inhibitory protein (c-FLIP). The immunohistochemical analysis of the DISC members revealed a strong expression of CD95 and c-FLIP overexpression in 55 out of 59 cases of cHL. FADD overexpression was detectable in several cases. Triggering of the CD95 pathway in HRS cells is indicated by the presence of CD95L in cells surrounding them as well as confocal microscopy showing c-FLIP predominantly localized at the cell membrane. Elevated c-FLIP expression in HRS cells depends on nuclear factor (NF)-κB. Despite expression of other NF-κB–dependent antiapoptotic proteins, the selective down-regulation of c-FLIP by small interfering RNA oligoribonucleotides was sufficient to sensitize HRS cells to CD95 and tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis. Therefore, c-FLIP is a key regulator of death receptor resistance in HRS cells.


Nature Medicine | 2010

Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma

Björn Lamprecht; Korden Walter; Stephan Kreher; Raman Kumar; Michael Hummel; Dido Lenze; Karl Köchert; Mohamed Amine Bouhlel; Julia Richter; Eric Soler; Ralph Stadhouders; Korinna Jöhrens; Wurster Kd; David F. Callen; Michael F Harte; Maciej Giefing; Rachael Barlow; Harald Stein; Ioannis Anagnostopoulos; Martin Janz; Peter N. Cockerill; Reiner Siebert; Bernd Dörken; Constanze Bonifer; Stephan Mathas

Mammalian genomes contain many repetitive elements, including long terminal repeats (LTRs), which have long been suspected to have a role in tumorigenesis. Here we present evidence that aberrant LTR activation contributes to lineage-inappropriate gene expression in transformed human cells and that such gene expression is central for tumor cell survival. We show that B cell–derived Hodgkins lymphoma cells depend on the activity of the non-B, myeloid-specific proto-oncogene colony-stimulating factor 1 receptor (CSF1R). In these cells, CSF1R transcription initiates at an aberrantly activated endogenous LTR of the MaLR family (THE1B). Derepression of the THE1 subfamily of MaLR LTRs is widespread in the genome of Hodgkins lymphoma cells and is associated with impaired epigenetic control due to loss of expression of the corepressor CBFA2T3. Furthermore, we detect LTR-driven CSF1R transcripts in anaplastic large cell lymphoma, in which CSF1R is known to be expressed aberrantly. We conclude that LTR derepression is involved in the pathogenesis of human lymphomas, a finding that might have diagnostic, prognostic and therapeutic implications.


Nature Immunology | 2006

Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma

Stephan Mathas; Martin Janz; Franziska Hummel; Michael Hummel; Brigitte Wollert-Wulf; Simone Lusatis; Ioannis Anagnostopoulos; Andreas Lietz; Mikael Sigvardsson; Franziska Jundt; Korinna Jöhrens; Kurt Bommert; Harald Stein; Bernd Dörken

B cell differentiation is controlled by a complex network of lineage-restricted transcription factors. How perturbations to this network alter B cell fate remains poorly understood. Here we show that classical Hodgkin lymphoma tumor cells, which originate from mature B cells, have lost the B cell phenotype as a result of aberrant expression of transcriptional regulators. The B cell–specific transcription factor program was disrupted by overexpression of the helix-loop-helix proteins ABF-1 and Id2. Both factors antagonized the function of the B cell–determining transcription factor E2A. As a result, expression of genes specific to B cells was lost and expression of genes not normally associated with the B lineage was upregulated. These data demonstrate the plasticity of mature human lymphoid cells and offer an explanation for the unique classical Hodgkin lymphoma phenotype.* NOTE: In the version of this article initially published online, the directions to the panels for Figure 6e were incorrect in the legend and text. The legend for this panel should begin as follows: “Immunoblot (top), EMSA (bottom left) and RT-PCR (bottom right)….” The accompanying text should read as follows: “Transfection of L428 cells with a combination of these siRNAs efficiently reduced ABF-1 protein expression (Fig. 6e, top) and resulted in a substantial loss of E2A–ABF-1 DNA-binding activity (Fig. 6e, bottom left). After reduction of ABF-1 expression, we noted considerable downregulation of CSF1R and TCF7 expression and a moderate suppression of GATA3 expression (Fig. 6e, bottom right).” The error has been corrected for the HTML and print versions of the article.


Nature Immunology | 2012

The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers

Dinis Pedro Calado; Yoshiteru Sasaki; Susana A. Godinho; Alex Pellerin; Karl Köchert; Barry P. Sleckman; Ignacio Moreno de Alborán; Martin Janz; Scott J. Rodig; Klaus Rajewsky

Germinal centers (GCs) are sites of intense B cell proliferation and are central for T cell–dependent antibody responses. However, the role of c-Myc, a key cell-cycle regulator, in this process has been questioned. Here we identified c-Myc+ B cell subpopulations in immature and mature GCs and found, by genetic ablation of Myc, that they had indispensable roles in the formation and maintenance of GCs. The identification of these functionally critical cellular subsets has implications for human B cell lymphomagenesis, which originates mostly from GC B cells and frequently involves MYC chromosomal translocations. As these translocations are generally dependent on transcription of the recombining partner loci, the c-Myc+ GC subpopulations may be at a particularly high risk for malignant transformation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma

Matthias Pfeifer; Michael Grau; Dido Lenze; Sören-Sebastian Wenzel; Annette Wolf; Brigitte Wollert-Wulf; Kerstin Dietze; Hendrik Nogai; Benjamin Storek; Hannelore Madle; Bernd Dörken; Martin Janz; Stephan Dirnhofer; Peter Lenz; Michael Hummel; Alexandar Tzankov; Georg Lenz

Diffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Reexpression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Reexpression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma

Stephan Mathas; Stephan Kreher; Karen J. Meaburn; Korinna Jöhrens; Björn Lamprecht; Chalid Assaf; Wolfram Sterry; Marshall E. Kadin; Masanori Daibata; Stefan Joos; Michael Hummel; Harald Stein; Martin Janz; Ioannis Anagnostopoulos; Evelin Schröck; Tom Misteli; Bernd Dörken

Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL.


Blood | 2008

Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α

Björn Lamprecht; Stephan Kreher; Ioannis Anagnostopoulos; Korinna Jöhrens; Giovanni Monteleone; Franziska Jundt; Harald Stein; Martin Janz; Bernd Dörken; Stephan Mathas

The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are derived from mature B cells, but have lost a considerable part of the B cell-specific gene expression pattern. Consequences of such a lineage infidelity for lymphoma pathogenesis are currently not defined. Here, we report that HRS cells aberrantly express the common cytokine-receptor gamma-chain (gamma(c)) cytokine IL-21, which is usually restricted to a subset of CD4(+) T cells, and the corresponding IL-21 receptor. We demonstrate that IL-21 activates STAT3 in HRS cells, up-regulates STAT3 target genes, and protects HRS cells from CD95 death receptor-induced apoptosis. Furthermore, IL-21 is involved in up-regulation of the CC chemokine macrophage-inflammatory protein-3alpha (MIP-3alpha) in HRS cells. MIP-3alpha in turn attracts CCR6(+)CD4(+)CD25(+)FoxP3(+)CD127(lo) regulatory T cells toward HRS cells, which might favor their immune escape. Together, these data support the concept that aberrant expression of B lineage-inappropriate genes plays an important role for the biology of HL tumor cells.


Blood | 2009

C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

Rekha Pal; Martin Janz; Deborah L. Galson; Margarete Gries; Shirong Li; Korinna Jöhrens; Ioannis Anagnostopoulos; Bernd Dörken; Markus Y. Mapara; Lisa Borghesi; Lela Kardava; G. D. Roodman; Christine Milcarek; Suzanne Lentzsch

CCAAT/enhancer-binding protein beta (C/EBPbeta), also known as nuclear factor-interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPbeta show impaired generation of B lymphocytes. We show that C/EBPbeta regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPbeta, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPbeta. Silencing of C/EBPbeta led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPbeta led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPbeta directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPbeta is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPbeta may provide a novel therapeutic strategy in the treatment of multiple myeloma.


Blood | 2013

IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL

Hendrik Nogai; Sören-Sebastian Wenzel; Stephan Hailfinger; Michael Grau; Eva Kaergel; Volkhard Seitz; Brigitte Wollert-Wulf; Matthias Pfeifer; Annette Wolf; Mareike Frick; Kerstin Dietze; Hannelore Madle; Alexander Tzankov; Michael Hummel; Bernd Dörken; Claus Scheidereit; Martin Janz; Peter Lenz; Margot Thome; Georg Lenz

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.


Oncogene | 2011

Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells.

Unn-Merete Fagerli; K Ullrich; T. Stühmer; Toril Holien; Karl Köchert; Randi Utne Holt; Ove Bruland; Manik Chatterjee; H. Nogai; Georg Lenz; John D. Shaughnessy; Stephan Mathas; Anders Sundan; R. C. Bargou; Bernd Dörken; Martin Janz

Multiple myeloma (MM) is a paradigm for a malignant disease that exploits external stimuli of the microenvironment for growth and survival. A thorough understanding of the complex interactions between malignant plasma cells and their surrounding requires a detailed analysis of the transcriptional response of myeloma cells to environmental signals. We determined the changes in gene expression induced by interleukin (IL)-6, tumor necrosis factor-α, IL-21 or co-culture with bone marrow stromal cells in myeloma cell lines. Among a limited set of genes that were consistently activated in response to growth factors, a prominent transcriptional target of cytokine-induced signaling in myeloma cells was the gene encoding the serine/threonine kinase serum/glucocorticoid-regulated kinase 1 (SGK1), which is a down-stream effector of PI3-kinase. We could demonstrate a rapid, strong and sustained induction of SGK1 in the cell lines INA-6, ANBL-6, IH-1, OH-2 and MM.1S as well as in primary myeloma cells. Pharmacologic inhibition of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway abolished STAT3 phosphorylation and SGK1 induction. In addition, small hairpin RNA (shRNA)-mediated knock-down of STAT3 reduced basal and induced SGK1 levels. Furthermore, downregulation of SGK1 by shRNAs resulted in decreased proliferation of myeloma cell lines and reduced cell numbers. On the molecular level, this was reflected by the induction of cell cycle inhibitory genes, for example, CDKNA1/p21, whereas positively acting factors such as CDK6 and RBL2/p130 were downregulated. Our results indicate that SGK1 is a highly cytokine-responsive gene in myeloma cells promoting their malignant growth.

Collaboration


Dive into the Martin Janz's collaboration.

Top Co-Authors

Avatar

Bernd Dörken

Humboldt State University

View shared research outputs
Top Co-Authors

Avatar

Harald Stein

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Karl Köchert

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge