Martin Jutzeler
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Jutzeler.
Geochemistry Geophysics Geosystems | 2012
Michael Manga; Matthew J. Hornbach; Anne Le Friant; Osamu Ishizuka; Nicole A. Stroncik; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Andrew Fraass; Akihiko Fujinawa; Robert G. Hatfield; Martin Jutzeler; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Martinez-Colon; Molly McCanta; Sally Morgan; Martin R. Palmer; Takeshi Saito; Angela L. Slagle; Adam J. Stinton; K. S. V. Subramanyam; Yoshihiko Tamura; Peter J. Talling; Benoît Villemant; Deborah Wall-Palmer; Fei Wang
Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.
Geochemistry Geophysics Geosystems | 2014
Martin Jutzeler; James D. L. White; Peter J. Talling; Molly McCanta; Sally Morgan; Anne Le Friant; Osamu Ishizuka
Piston cores collected from IODP drilling platforms (and its predecessors) provide the best long-term geological and climatic record of marine sediments worldwide. Coring disturbances affecting the original sediment texture have been recognized since the early days of coring, and include deformation resulting from shear of sediment against the core barrel, basal flow-in due to partial stroke, loss of stratigraphy, fall-in, sediment loss through core catchers, and structures formed during core recovery and on-deck transport. The most severe disturbances occur in non-cohesive (sandy) facies, which are particularly common in volcanogenic environments and submarine fans. Although all of these types of coring disturbances have been recognized previously, our contribution is novel because it provides an easily accessible summary of methods for their identification. This contribution gives two specific examples on the importance of these coring disturbances. We show how suck-in of sediments during coring artificially created very thick volcaniclastic sand layers in cores offshore Montserrat and Martinique (Lesser Antilles). We then analyze very thick, structureless sand layers from the Escanaba Trough inferred to be a record of the Missoula mega-floods. These sand layers tend to coincide with the base of core sections, and their facies suggest coring disturbance by basal flow-in, destroying the original structure and texture of the beds. We conclude by outlining and supporting IODP-led initiatives to further reduce and identify coring disturbances, and acknowledge their recent successes in drilling challenging sand-rich settings, such as during IODP Expedition 340.
Science & Engineering Faculty | 2015
A. Le Friant; Osamu Ishizuka; Georges Boudon; Martin R. Palmer; Peter J. Talling; B. Villemant; Tatsuya Adachi; Mohammed Aljahdali; Christoph Breitkreuz; Morgane Brunet; Benoit Caron; Maya Coussens; Christine Deplus; Daisuke Endo; Nathalie Feuillet; A.J. Fraas; Akihiko Fujinawa; Malcolm B. Hart; Robert G. Hatfield; Matt Hornbach; Martin Jutzeler; Kyoko S. Kataoka; J-C. Komorowski; Elodie Lebas; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Nature Communications | 2014
Martin Jutzeler; Robert Marsh; R. J. Carey; James D. L. White; Peter J. Talling; Leif Karlstrom
Pumice rafts are floating mobile accumulations of low-density pumice clasts generated by silicic volcanic eruptions. Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. Here we show that the pumice raft formed by the impressive, deep submarine eruption of the Havre caldera volcano (Southwest Pacific) in July 2012 can be mapped by satellite imagery augmented by sailing crew observations. Far from coastal interference, the eruption produced a single >400 km2 raft in 1 day, thus initiating a gigantic, high-precision, natural experiment relevant to both modern and prehistoric oceanic surface dispersal dynamics. Observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast. For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean.
Eos, Transactions American Geophysical Union | 2014
R. J. Carey; R. J. Wysoczanski; Richard Wunderman; Martin Jutzeler
It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajokull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.
Geochemistry Geophysics Geosystems | 2014
Deborah Wall-Palmer; Maya Coussens; Peter J. Talling; Martin Jutzeler; Michael Cassidy; Isabelle Marchant; Martin R. Palmer; S.F.L. Watt; Christopher W. Smart; Jodie K. Fisher; Malcolm B. Hart; Andrew Fraass; J. Trofimovs; Anne Le Friant; Osamu Ishizuka; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial data sets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here we discuss a marine record of eruptive and mass-wasting events spanning ∼250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils, and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlations of these events across sediment cores collected offshore of the south and south west of Montserrat have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents traveled at least 33 km offshore and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Journal of Geophysical Research | 2011
Martin Jutzeler; Nick Varley; Michael Roach
[1] The 1982 explosive eruptions of El Chichon volcano (Chiapas, Mexico) destroyed the inner dome and created a 1-km-wide and 180-m-deep crater within the somma crater. A shallow hydrothermal system was exposed to the surface of the new crater floor and is characterized by an acid crater lake, a geyser-like Cl-rich spring (soap pool), and numerous fumarole fields. Multiple geophysical surveys were performed to define the internal structure of the volcanic edifice and its hydrothermal system. We carried out a high-resolution ground-based geomagnetic survey in the 1982 crater and its surroundings and 38 very low frequency (VLF) transects around the crater lake. A 3-D inversion of the ground-based magnetic data set highlighted three high-susceptibility isosurfaces, interpreted as highly magnetized bodies beneath the 1982 crater floor. Inversion of a digitized regional aeromagnetic map highlighted four major deeply rooted cryptodomes, corresponding to major topographic highs and massive lava dome outcrops outside and on the somma rim. The intracrater magnetic bodies correspond closely to the active hydrothermal vents and their modeled maximum basal depth matches the elevation of the springs on the flanks of the volcano. Position, dip, and vertical extent of active and extinct hydrothermal vents identified by VLF-EM surveys match the magnetic data set. We interpret the shallow lake spring hydrothermal system to be mostly associated with buried remnants of the 550 BP dome, but the Cl-rich soap pool may be connected to a small intrusion emplaced at shallow depth during the 1982 eruption.
Geological Society of America Bulletin | 2014
Martin Jutzeler; Jocelyn McPhie; S.R. Allen
The >800-m-thick, Oligocene Ohanapecosh Formation records voluminous sedimentation of volcanic clasts in the Ancestral Cascades arc (Washington State, USA). Most volcaniclastic beds are dominated by angular pumice clasts and fiamme of andesitic composition, now entirely devitrified and altered. All beds are laterally continuous and have uniform thickness; fine sandstone and mudstone beds have features typical of deposits from low-density turbidity currents and suspension settling. Erosion surfaces, cross-beds, and evidence of bi-directional oscillatory currents (i.e., wave ripples and swaley and hummocky cross-stratification) are almost entirely absent. We infer that the setting was subaqueous and below wave base. The abundance of angular pumice clasts, crystals and dense volcanic clasts, and the extreme thickness of several facies, suggest they were derived from magmatic volatile-driven explosive eruptions. The extremely thick beds are ungraded or weakly graded, and lack evidence of hot emplacement, suggesting deposition from subaqueous, water-supported, high-concentration volcaniclastic density currents. Some of the thickest beds contain coarse, rounded, dense clasts at their base and are interbedded with accretionary lapilli–bearing mudstone; these beds are interpreted to be deposits from subaqueous density currents fed by subaerial pyroclastic flows that crossed the shoreline. Shallow basaltic intrusions and mafic volcanic breccia composed of scoria lapilli indicate the presence of intra-basinal scoria cones that may have been partly subaerial. The range in facies in the Ohanapecosh Formation is typical of below-wave-base, continental (lacustrine) basins that form in proximity to active volcanic arcs, and includes eruption-fed and resedimented facies. Extreme instantaneous aggradation rates are related directly to explosive eruptions, and sediment pathways reflect the locations of active volcanoes, in contrast to conventional sedimentation processes acting in non-volcanic environments.
Science Advances | 2018
R. J. Carey; S. Adam Soule; Michael Manga; James D. L. White; Jocelyn McPhie; R. J. Wysoczanski; Martin Jutzeler; Kenichiro Tani; Dana R. Yoerger; Daniel J. Fornari; Fabio Caratori-Tontini; Bruce F. Houghton; Samuel J. Mitchell; Fumihiko Ikegami; Chris E. Conway; Arran Murch; Kristen Fauria; Meghan Jones; Ryan Cahalan; Warren McKenzie
A submersible study of the products of a large submarine eruption demonstrates the influence of the ocean on eruption dynamics. The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.
Geochemistry Geophysics Geosystems | 2016
Maya Coussens; Deborah Wall-Palmer; Peter J. Talling; S.F.L. Watt; Michael Cassidy; Martin Jutzeler; Michael A. Clare; James E. Hunt; Michael Manga; Thomas M. Gernon; Martin R. Palmer; Stuart J. Hatter; Georges Boudon; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Osamu Ishizuka; Kyoko S. Kataoka; Anne Le Friant; Fukashi Maeno; Molly McCanta; Adam J. Stinton
Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufriere Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufriere Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings.
Collaboration
Dive into the Martin Jutzeler's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs