Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin K. Schwarz is active.

Publication


Featured researches published by Martin K. Schwarz.


Neuron | 2012

Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response

H. Sophie Knobloch; Alexandre Charlet; Lena C. Hoffmann; Marina Eliava; Sergey Khrulev; Ali Cetin; Pavel Osten; Martin K. Schwarz; Peter H. Seeburg; Ron Stoop; Valery Grinevich

The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression. In vitro, exposure to blue light of channelrhodopsin-2-expressing OT axons activated a local GABAergic circuit that inhibited neurons in the output region of the CeA. Remarkably, in vivo, local blue-light-induced endogenous OT release robustly decreased freezing responses in fear-conditioned rats. Our results thus show widespread central projections of hypothalamic OT neurons and demonstrate that OT release from local axonal endings can specifically control region-associated behaviors.


Neuron | 2010

Homeostatic Scaling Requires Group I mGluR Activation Mediated by Homer1a

Jia Hua Hu; Joo Min Park; Sungjin Park; Bo Xiao; Marlin H. Dehoff; Sangmok Kim; Takashi Hayashi; Martin K. Schwarz; Richard L. Huganir; Peter H. Seeburg; David J. Linden; Paul F. Worley

Homeostatic scaling is a non-Hebbian form of neural plasticity that maintains neuronal excitability and informational content of synaptic arrays in the face of changes of network activity. Here, we demonstrate that homeostatic scaling is dependent on group I metabotropic glutamate receptor activation that is mediated by the immediate early gene Homer1a. Homer1a is transiently upregulated during increases in network activity and evokes agonist-independent signaling of group I mGluRs that scales down the expression of synaptic AMPA receptors. Homer1a effects are dynamic and play a role in the induction of scaling. Similar to mGluR-LTD, Homer1a-dependent scaling involves a reduction of tyrosine phosphorylation of GluA2 (GluR2), but is distinct in that it exploits a unique signaling property of group I mGluR to confer cell-wide, agonist-independent activation of the receptor. These studies reveal an elegant interplay of mechanisms that underlie Hebbian and non-Hebbian plasticity.


The Journal of Neuroscience | 2005

Distinct Roles for Different Homer1 Isoforms in Behaviors and Associated Prefrontal Cortex Function

Kevin D. Lominac; Erik B. Oleson; Matthew J. Pava; Matthias Klugmann; Martin K. Schwarz; Peter H. Seeburg; Matthew J. During; Paul F. Worley; Peter W. Kalivas; Karen K. Szumlinski

Homer1 mutant mice exhibit behavioral and neurochemical abnormalities that are consistent with an animal model of schizophrenia. Because the Homer1 gene encodes both immediate early gene (IEG) and constitutively expressed (CC) gene products, we used the local infusion of adeno-associated viral vectors carrying different Homer1 transcriptional variants into the prefrontal cortex (PFC) to distinguish between the roles for IEG and CC Homer1 isoforms in the “schizophrenia-like” phenotype of Homer1 mutant mice. PFC overexpression of the IEG Homer1 isoform Homer1a reversed the genotypic differences in behavioral adaptation to repeated stress, whereas overexpression of the constitutively expressed Homer1 isoform Homer1c reversed the genotypic differences in sensorimotor and cognitive processing, as well as cocaine behavioral sensitivity. Homer1a overexpression did not influence PFC basal glutamate content but blunted the glutamate response to cocaine in wild-type mice. In contrast, Homer1c overexpression reversed the genotypic difference in PFC basal glutamate content and enhanced cocaine-induced elevations in glutamate. These data demonstrate active and distinct roles for Homer1a and Homer1c isoforms in the PFC in the mediation of behavior, in the maintenance of basal extracellular glutamate, and in the regulation of PFC glutamate release relevant to schizophrenia and stimulant abuse comorbidity.


Mechanisms of Development | 1999

Pax2/5 and Pax6 subdivide the early neural tube into three domains.

Martin K. Schwarz; Gonzalo Alvarez-Bolado; Gregory R. Dressler; Pavel Urbánek; Meinrad Busslinger; Peter Gruss

The nested expression patterns of the paired-box containing transcription factors Pax2/5 and Pax6 demarcate the midbrain and forebrain primordium at the neural plate stage. We demonstrate that, in Pax2/5 deficient mice, the mesencephalon/metencephalon primordium is completely missing, resulting in a fusion of the forebrain to the hindbrain. Morphologically, in the alar plate the deletion is characterized by the substitution of the tectum (dorsal midbrain) and cerebellum (dorsal metencephalon) by the caudal diencephalon and in the basal plate by the replacement of the midbrain tegmentum by the ventral metencephalon (pons). Molecularly, the loss of the tectum is demonstrated by an expanded expression of Pax6, (the molecular determinant of posterior commissure), and a rostral shift of the territory of expression of Gbx2 and Otp (markers for the pons), towards the caudal diencephalon. Our results suggest that an intact territory of expression of Pax2/5 in the neural plate, nested between the rostral and caudal territories of expression of Pax6, is necessary for defining the midbrain vesicle.


Neuron | 2015

Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit

Falko Fuhrmann; Daniel Justus; Liudmila Sosulina; Hiroshi Kaneko; Tatjana Beutel; Detlef Friedrichs; Susanne Schoch; Martin K. Schwarz; Martin Fuhrmann; Stefan Remy

Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT.


Journal of Biological Chemistry | 2005

γ-Protocadherins, Presenilin-mediated Release of C-terminal Fragment Promotes Locus Expression

Boris Hambsch; Valery Grinevich; Peter H. Seeburg; Martin K. Schwarz

γ-Protocadherins (γ-pcdhs) are type I membrane-spanning glycoproteins, widely expressed in the mammal and required for survival. These cell adhesion molecules are expressed from a complex locus comprising 22 functional variable exons arranged in tandem, each encoding extracellular, transmembrane and intracellular sequence, and three exons for an invariant C-terminal domain (γ-ICD). However, the signaling mechanisms that lie downstream of γ-pcdhs have not been elucidated. Here we report that γ-pcdhs are subject to presenilin-dependent intramembrane cleavage (PS-IP), accompanied by shedding of the extracellular domain. The cleaved intracellular domain (γ-ICD) translocates to the cell nucleus and was detected in subsets of cortical neurons. Notably, gene-targeted mice lacking functional γ-ICD sequence showed severely reduced γ-pcdh mRNA levels and neonatal lethality. Most importantly, inhibition of γ-secretase decreased γ-pcdh locus expression. Luciferase reporter assays demonstrated that γ-pcdh promoter activity is increased by γ-ICD. These results reveal an intracellular signaling mechanism for γ-pcdhs and identify a novel vital target for the γ-secretase complex.


Genes, Brain and Behavior | 2007

Complex, multimodal behavioral profile of the Homer1 knockout mouse

P. J. Jaubert; Mari S. Golub; Y. Y. Lo; S. L. Germann; Marlin H. Dehoff; Paul F. Worley; Shin H. Kang; Martin K. Schwarz; Peter H. Seeburg; Robert F. Berman

Proteins of the Homer1 immediate early gene family have been associated with synaptogenesis and synaptic plasticity suggesting broad behavioral consequences of loss of function. This study examined the behavior of male Homer1 knockout (KO) mice compared with wild‐type (WT) and heterozygous mice using a battery of 10 behavioral tests probing sensory, motor, social, emotional and learning/memory functions. KO mice showed mild somatic growth retardation, poor motor coordination, enhanced sensory reactivity and learning deficits. Heterozygous mice showed increased aggression in social interactions with conspecifics. The distribution of mGluR5 and N‐methyl‐d‐aspartate receptors (NMDA) receptors appeared to be unaltered in the hippocampus (HIP) of Homer1 KO mice. The results indicate an extensive range of disrupted behaviors that should contribute to the understanding of the Homer1 gene in brain development and behavior.


PLOS ONE | 2015

Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

Martin K. Schwarz; Annemarie Scherbarth; Rolf Sprengel; Johann Engelhardt; Patrick Theer; Guenter Giese

In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.


Frontiers in Neuroscience | 2007

Select Overexpression of Homer1a in Dorsal Hippocampus Impairs Spatial Working Memory

Tansu Celikel; Verena Marx; Florian Freudenberg; Aleksandar Zivkovic; Evgeny Resnik; Mazahir T. Hasan; Pawel Licznerski; Pavel Osten; Andrej Rozov; Peter H. Seeburg; Martin K. Schwarz

Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-mediated “uncoupling” for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet) controlled expression of Venus-tagged Homer1a (H1aV) in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP), which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP). These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.


Journal of Biological Chemistry | 2004

Reinvestigation of the role of snapin in neurotransmitter release.

Olga Vites; Jeong-Seop Rhee; Martin K. Schwarz; Christian Rosenmund; Reinhard Jahn

Snapin, a 15-kDa protein, has been identified recently as a binding partner of SNAP-25. Moreover, snapin is regulated by phosphorylation and enhances synaptotagmin binding to SNAREs. Furthermore, snapin and C-terminal snapin fragments have been effective in changing the release properties of neurons and chromaffin cells. Here we have reinvestigated the role of snapin using both biochemical and electrophysiological approaches. Snapin is ubiquitously expressed at low levels with no detectable enrichment in the brain or in synaptic vesicles. Using non-equilibrium and equilibrium assays including pulldown experiments, co-immunoprecipitations, and CD and fluorescence anisotropy spectroscopy, we were unable to detect any specific interaction between snapin and SNAP-25. Similarly, overexpression of a C-terminal snapin fragment in hippocampal neurons failed to influence any of the analyzed parameters of neurotransmitter release. Initial biochemical characterization of recombinant snapin revealed that the protein is a stable dimer with a predominantly α-helical secondary structure. We conclude that the postulated role of snapin as a SNARE regulator in neurotransmitter release needs reconsideration, leaving the true function of this evolutionarily conserved protein to be discovered.

Collaboration


Dive into the Martin K. Schwarz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul F. Worley

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge