Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Kleinschmidt is active.

Publication


Featured researches published by Martin Kleinschmidt.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor

Christoph Parthier; Martin Kleinschmidt; Piotr Neumann; Rainer Rudolph; Susanne Manhart; Dagmar Schlenzig; Jörg Fanghänel; Jens-Ulrich Rahfeld; Hans-Ulrich Demuth; Milton T. Stubbs

Incretins, endogenous polypeptide hormones released in response to food intake, potentiate insulin secretion from pancreatic β cells after oral glucose ingestion (the incretin effect). This response is signaled by the two peptide hormones glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) and glucagon-like peptide 1 through binding and activation of their cognate class 2 G protein-coupled receptors (GPCRs). Because the incretin effect is lost or significantly reduced in patients with type 2 diabetes mellitus, glucagon-like peptide 1 and GIP have attracted considerable attention for their potential in antidiabetic therapy. A paucity of structural information precludes a detailed understanding of the processes of hormone binding and receptor activation, hampering efforts to develop novel pharmaceuticals. Here we report the crystal structure of the complex of human GIP receptor extracellular domain (ECD) with its agonist, the incretin GIP1–42. The hormone binds in an α-helical conformation in a surface groove of the ECD largely through hydrophobic interactions. The N-terminal ligand residues would remain free to interact with other parts of the receptor. Thermodynamic data suggest that binding is concomitant with structural organization of the hormone, resulting in a complex mode of receptor–ligand recognition. The presentation of a well structured, α-helical ligand by the ECD is expected to be conserved among other hormone receptors of this class.


Biochemistry | 2009

Pyroglutamate Formation Influences Solubility and Amyloidogenicity of Amyloid Peptides

Dagmar Schlenzig; Susanne Manhart; Yeliz Cinar; Martin Kleinschmidt; Gerd Hause; Dieter Willbold; Susanne Aileen Funke; Stephan Schilling; Hans-Ulrich Demuth

N-Terminally truncated and pyroglutamate (pGlu) modified amyloid beta (Abeta) peptides are major constituents of amyloid deposits in sporadic and inherited Alzheimers disease (AD). Formation of pGlu at the N-terminus confers resistance against cleavage by most aminopeptidases, increases toxicity of the peptides, and may seed Abeta aggregate formation. Similarly, the deposited amyloid peptides ABri and ADan, which cause a very similar histopathology in familial British dementia (FBD) and familial Danish dementia (FDD), are N-terminally blocked by pGlu. Triggered by the coincidence of pGlu-modified amyloid peptides and similar pathology in AD, FBD, and FDD, we investigated the impact of N-terminal pGlu on biochemical and biophysical properties of Abeta, ABri, and ADan. N-Terminal pGlu increases the hydrophobicity and changes the pH-dependent solubility profile, rendering the pGlu-modified peptides less soluble in the basic pH range. The pGlu residue increases the aggregation propensity of all amyloid peptides as evidenced by ThT fluorescence assays and dynamic light scattering. The far-UV CD spectroscopic analysis points toward an enhanced beta-sheet structure of the pGlu-Abeta. Importantly, changes in fibril morphology are clearly caused by the N-terminal pGlu, resulting in the formation of short fibers, which are frequently arranged in bundles. The effect of pGlu on the morphology is virtually indistinguishable between ABri, ADan, and Abeta. The data provide evidence for a comparable influence of the pGlu modification on the aggregation process of structurally different amyloid peptides, thus likely contributing to the molecularly distinct neurodegenerative diseases AD, FBD, and FDD. The main driving force for the aggregation is apparently an increase in the hydrophobicity and thus an accelerated seed formation.


American Journal of Pathology | 2013

Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models

Jeffrey L. Frost; Kevin X. Le; Holger Cynis; Elizabeth Ekpo; Martin Kleinschmidt; Roberta M. Palmour; Frank R. Ervin; Shikha Snigdha; Carl W. Cotman; Takaomi C. Saido; Robert Vassar; Peter St George-Hyslop; Tsuneya Ikezu; Stephan Schilling; Hans Ulrich Demuth; Cynthia A. Lemere

Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.


Neurodegenerative Diseases | 2012

Passive Immunization against Pyroglutamate-3 Amyloid-β Reduces Plaque Burden in Alzheimer-Like Transgenic Mice: A Pilot Study

Jeffrey L. Frost; Bin Liu; Martin Kleinschmidt; Stephan Schilling; Hans-Ulrich Demuth; Cynthia A. Lemere

Background: N-terminally truncated and modified pyroglutamate-3 amyloid-β protein (pE3-Aβ) is present in most, if not all, cerebral plaque and vascular amyloid deposits in human Alzheimer’s disease (AD). pE3-Aβ deposition is also found in AD-like transgenic (tg) mouse brain, albeit in lesser quantities than general Aβ. pE3-Aβ resists degradation, is neurotoxic, and may act as a seed for Aβ aggregation. Objective: We sought to determine if pE3-Aβ removal by passive immunization with a highly specific monoclonal antibody (mAb) impacts pathogenesis in a mouse model of Alzheimer’s amyloidosis. Methods: APPswe/PS1ΔE9 tg mice were given weekly intraperitoneal injections of a new anti-pE3-Aβ mAb (mAb07/1) or PBS from 5.8 to 13.8 months of age (prevention) or from 23 to 24.7 months of age (therapeutic). Multiple forms of cerebral Aβ were quantified pathologically and biochemically. Gliosis and microhemorrhage were examined. Results: Chronic passive immunization with an anti-pE3-Aβ mAb significantly reduced total plaque deposition and appeared to lower gliosis in the hippocampus and cerebellum in both the prevention and therapeutic studies. Insoluble Aβ levels in hemibrain homogenates were not significantly different between immunized and control mice. Microhemorrhage was not observed with anti-pE3-Aβ immunotherapy. Conclusions: Selective removal of pE3-Aβ lowered general Aβ plaque deposition suggesting a pro-aggregation or seeding role for pE3-Aβ.


Embo Molecular Medicine | 2011

The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions

Holger Cynis; Torsten Hoffmann; Daniel Friedrich; Astrid Kehlen; Kathrin Gans; Martin Kleinschmidt; Jens-Ulrich Rahfeld; Raik Wolf; Michael Wermann; Anett Stephan; Monique Haegele; Reinhard Sedlmeier; Sigrid Graubner; Wolfgang Jagla; Anke Müller; Rico Eichentopf; Ulrich Heiser; Franziska Seifert; Paul H.A. Quax; Margreet R. de Vries; Isabel Hesse; Daniela Trautwein; Ulrich Wollert; Sabine Berg; Ernst-Joachim Freyse; Stephan Schilling; Hans-Ulrich Demuth

Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N‐terminus of the polypeptide. Among those, the N‐terminus of monocyte chemoattractant protein 1 (CCL2 and MCP‐1) is modified to a pyroglutamate (pE‐) residue protecting against degradation in vivo. Here, we show that the N‐terminal pE‐formation depends on glutaminyl cyclase activity. The pE‐residue increases stability against N‐terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso‐enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1‐CCL2 formation and monocyte infiltration. Consistently, administration of QC‐inhibitors in inflammatory models, such as thioglycollate‐induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC‐inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2‐driven disorders such as atherosclerosis/restenosis and fibrosis.


Neurobiology of Aging | 2015

An anti-pyroglutamate-3 Aβ vaccine reduces plaques and improves cognition in APPswe/PS1ΔE9 mice

Jeffrey L. Frost; Bin Liu; Jens-Ulrich Rahfeld; Martin Kleinschmidt; Brian O'Nuallain; Kevin X. Le; Inge Lues; Stephan Schilling; Hans-Ulrich Demuth; Cynthia A. Lemere

Pyroglutamate-3 amyloid-beta (pGlu-3 Aβ) is an N-terminally truncated Aβ isoform likely playing a decisive role in Alzheimers disease pathogenesis. Here, we describe a prophylactic passive immunization study in APPswe/PS1ΔE9 mice using a novel pGlu-3 Aβ immunoglobulin G1 (IgG1) monoclonal antibody, 07/1 (150 and 500 μg, intraperitoneal, weekly) and compare its efficacy with a general Aβ IgG1 monoclonal antibody, 3A1 (200 μg, intraperitoneal, weekly) as a positive control. After 28 weeks of treatment, plaque burden was reduced and cognitive performance of 07/1-immunized Tg mice, especially at the higher dose, was normalized to wild-type levels in 2 hippocampal-dependent tests and partially spared compared with phosphate-buffered saline-treated Tg mice. Mice that received 3A1 had reduced plaque burden but showed no cognitive benefit. In contrast with 3A1, treatment with 07/1 did not increase the concentration of Aβ in plasma, suggesting different modes of Aβ plaque clearance. In conclusion, early selective targeting of pGlu-3 Aβ by immunotherapy may be effective in lowering cerebral Aβ plaque burden and preventing cognitive decline in the clinical setting. Targeting this pathologically modified form of Aβ thereby is unlikely to interfere with potential physiologic function(s) of Aβ that have been proposed.


Journal of Peptide Science | 2012

Structural analysis of the pyroglutamate‐modified isoform of the Alzheimer's disease‐related amyloid‐β using NMR spectroscopy

Na Sun; Rudolf Hartmann; Justin Lecher; Matthias Stoldt; Susanne Aileen Funke; Lothar Gremer; Hans-Henning Ludwig; Hans-Ulrich Demuth; Martin Kleinschmidt; Dieter Willbold

The aggregation of the Aβ plays a fundamental role in the pathology of AD. Recently, N‐terminally modified Aβ species, pE‐Aβ, have been described as major constituents of Aβ deposits in the brains of AD patients. pE‐Aβ has an increased aggregation propensity and shows increased toxicity compared with Aβ1‐40 and Aβ1‐42. In the present work, high‐resolution NMR spectroscopy was performed to study pE‐Aβ3‐40 in aqueous TFE‐containing solution. Two‐dimensional TOCSY and NOESY experiments were performed. On the basis of NOE and chemical shift data, pE‐Aβ3‐40 was shown to contain two helical regions formed by residues 14–22 and 30–36. This is similar as previously described for Aβ1‐40. However, the secondary chemical shift data indicate decreased helical propensity in pE‐Aβ3‐40 when compared with Aβ1‐40 under exactly the same conditions. This is in agreement with the observation that pE‐Aβ3‐40 shows a drastically increased tendency to form β‐sheet‐rich structures under more physiologic conditions. Structural studies of pE‐Aβ are crucial for better understanding the structural basis of amyloid fibril formation in the brain during development of AD, especially because an increasing number of reports indicate a decisive role of pE‐Aβ for the pathogenesis of AD. Copyright


Journal of Pharmacology and Experimental Therapeutics | 2017

Glutaminyl Cyclase Inhibitor PQ912 improves cognition in mouse models of Alzheimer's disease - studies on relation to effective target occupancy

Torsten Hoffmann; Antje Meyer; Ulrich Heiser; Stephan Kurat; Livia Böhme; Martin Kleinschmidt; Karl-Ulrich Bühring; Birgit Hutter-Paier; Martina Farcher; Hans-Ulrich Demuth; Inge Lues; Stephan Schilling

Numerous studies suggest that the majority of amyloid-β (Aβ) peptides deposited in Alzheimer’s disease (AD) are truncated and post-translationally modified at the N terminus. Among these modified species, pyroglutamyl-Aβ (pE-Aβ, including N3pE-Aβ40/42 and N11pE-Aβ40/42) has been identified as particularly neurotoxic. The N-terminal modification renders the peptide hydrophobic, accelerates formation of oligomers, and reduces degradation by peptidases, leading ultimately to the accumulation of the peptide and progression of AD. It has been shown that the formation of pyroglutamyl residues is catalyzed by glutaminyl cyclase (QC). Here, we present data about the pharmacological in vitro and in vivo efficacy of the QC inhibitor (S)-1-(1H-benzo[d]imidazol-5-yl)-5-(4-propoxyphenyl)imidazolidin-2-one (PQ912), the first-in-class compound that is in clinical development. PQ912 inhibits human, rat, and mouse QC activity, with Ki values ranging between 20 and 65 nM. Chronic oral treatment of hAPPSLxhQC double-transgenic mice with approximately 200 mg/kg/day via chow shows a significant reduction of pE-Aβ levels and concomitant improvement of spatial learning in a Morris water maze test paradigm. This dose results in a brain and cerebrospinal fluid concentration of PQ912 which relates to a QC target occupancy of about 60%. Thus, we conclude that >50% inhibition of QC activity in the brain leads to robust treatment effects. Secondary pharmacology experiments in mice indicate a fairly large potency difference for Aβ cyclization compared with cyclization of physiologic substrates, suggesting a robust therapeutic window in humans. This information constitutes an important translational guidance for predicting the therapeutic dose range in clinical studies with PQ912.


Journal of Alzheimer's Disease | 2015

Characterizing Aging, Mild Cognitive Impairment, and Dementia with Blood-Based Biomarkers and Neuropsychology.

Martin Kleinschmidt; Robby Schoenfeld; Claudia Göttlich; Daniel Bittner; Jürgen Metzner; Bernd Leplow; Hans-Ulrich Demuth

BACKGROUND Current treatment in Alzheimers disease (AD) is initiated at a stage where the brain already has irreversible structural deteriorations. Therefore, the concept of treatment prior to obvious cognitive deficits has become widely accepted, and simple biochemical tests to discriminate normal aging from prodromal or demented stages are now common practice. OBJECTIVE The objective of the study was the differentiation of controls, mild cognitive impairment (MCI) and AD patients by novel blood-based assays in combination with neuropsychological tests. METHODS In a cross-sectional study, 143 subjects aged 18 to 85 years were recruited. All participants were classified by a comprehensive neuropsychological assessment. Blood samples were analyzed for several amyloid-β (Aβ) species, pro-inflammatory markers, anti-Aβ autoantibodies, and ApoE allele status, respectively. RESULTS Plasma Aβ1-42 was significantly decreased in MCI and AD compared to age-matched controls, whereas Aβ1-40 did not differ, but increases with age in healthy controls. The Aβ1-42 to Aβ1-40 ratio was stepwise decreased from age-matched controls via MCI to AD, and shows a clear correlation with memory scores. Reduced Aβ1-42 and Aβ1-42 to Aβ1-40 ratio have strongly correlated with carrying ApoE ɛ4 allele. Autoantibodies against pyroglutamate-modified Aβ, but only a certain subclass, were significantly decreased in AD compared to MCI and age-matched controls, whereas autoantibodies against the unmodified N-terminus of Aβ did not differ. CONCLUSION Comprehensive sample preparation and assay standardization enable reliable usage of plasma Aβ for diagnosis of MCI and AD. Anti-pGlu-Aβ autoantibodies correlate with cognition, but not with ApoE, supporting the associated plasma Aβ analysis with additional and independent information.


Journal of Biological Chemistry | 2017

Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Alzheimer immunotherapy

Anke Piechotta; Christoph Parthier; Martin Kleinschmidt; Kathrin Gnoth; Thierry Pillot; Inge Lues; Hans-Ulrich Demuth; Stephan Schilling; Jens-Ulrich Rahfeld; Milton T. Stubbs

Alzheimer disease is associated with deposition of the amyloidogenic peptide Aβ in the brain. Passive immunization using Aβ-specific antibodies has been demonstrated to reduce amyloid deposition both in vitro and in vivo. Because N-terminally truncated pyroglutamate (pE)-modified Aβ species (AβpE3) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize AβpE3 with affinities of 1–10 nm and inhibit AβpE3 fibril formation in vitro. In vivo application of one of these resulted in improved memory in AβpE3 oligomer-treated mice. Crystal structures of Fab-AβpE3 complexes revealed two distinct binding modes for the peptide. Juxtaposition of pyroglutamate pE3 and the F4 side chain (the “pEF head”) confers a pronounced bulky hydrophobic nature to the AβpE3 N terminus that might explain the enhanced aggregation properties of the modified peptide. The deep burial of the pEF head by two of the antibodies explains their high target specificity and low cross-reactivity, making them promising candidates for the development of clinical antibodies.

Collaboration


Dive into the Martin Kleinschmidt's collaboration.

Top Co-Authors

Avatar

Hans-Ulrich Demuth

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Cynthia A. Lemere

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jeffrey L. Frost

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bin Liu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kevin X. Le

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dieter Willbold

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bittner

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Torsten Hoffmann

Martin Luther University of Halle-Wittenberg

View shared research outputs
Top Co-Authors

Avatar

Yeliz Cinar

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge