Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Kolev is active.

Publication


Featured researches published by Martin Kolev.


Immunity | 2013

Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

M. Kathryn Liszewski; Martin Kolev; Gaelle Le Friec; Marilyn K. Leung; Paula Bertram; Antonella F. Fara; Marta Subias; Matthew C. Pickering; Christian Drouet; Seppo Meri; T. Petteri Arstila; Pirkka T. Pekkarinen; Margaret H. Ma; Andrew P. Cope; Thomas Reinheckel; Santiago Rodríguez de Córdoba; Behdad Afzali; John P. Atkinson; Claudia Kemper

Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.


Nature Reviews Immunology | 2014

Complement — tapping into new sites and effector systems

Martin Kolev; Gaelle Le Friec; Claudia Kemper

Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.


Immunity | 2015

Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses

Martin Kolev; Sarah Dimeloe; Gaelle Le Friec; Alexander A. Navarini; Giuseppina Arbore; Giovanni A.M. Povoleri; Marco Fischer; Réka Belle; Jordan Loeliger; Leyla Develioglu; Glenn R. Bantug; Julie Watson; Lionel Couzi; Behdad Afzali; Paul Lavender; Christoph Hess; Claudia Kemper

Summary Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4+ T cell effector function.


Molecular Immunology | 2017

Intracellular complement − the complosome − in immune cell regulation

Giuseppina Arbore; Claudia Kemper; Martin Kolev

Abstract The complement system was defined over a century ago based on its ability to “complement” the antibody-mediated and cell-mediated immune responses against pathogens. Today our understanding of this ancient part of innate immunity has changed substantially and we know now that complement plays an undisputed pivotal role in the regulation of both innate and adaptive immunity. The complement system consists of over 50 blood-circulating, cell-surface expressed and intracellular proteins. It is key in the recognition and elimination of invading pathogens, also in the removal of self-derived danger such as apoptotic cells, and it supports innate immune responses and the initiation of the general inflammatory reactions. The long prevailing classic view of complement was that of a serum-operative danger sensor and first line of defence system, however, recent experimental and clinical evidences have demonstrated that “local” tissue and surprisingly intracellular complement (the complosome) activation impacts on normal cell physiology. This review will focus on novel aspects of intracellular complement activation and its unexpected roles in basic cell processes such as metabolism. We also discuss what the existence of the complosome potentially means for how the host handles intracellular pathogens such as viruses.


Frontiers in Immunology | 2017

Keeping It All Going-Complement Meets Metabolism

Martin Kolev; Claudia Kemper

The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather “predictable” but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.


The Journal of Allergy and Clinical Immunology | 2017

Human plasma C3 is essential for the development of memory B, but not T, lymphocytes

Anaïs Jiménez-Reinoso; Ana V. Marin; Marta Subias; Alberto López-Lera; Elena Román-Ortiz; Kathryn Payne; Cindy S. Ma; Giuseppina Arbore; Martin Kolev; Simon Freeley; Claudia Kemper; Stuart G. Tangye; Edgar Fernández-Malavé; Santiago Rodríguez de Córdoba; Margarita López-Trascasa; José R. Regueiro

To the Editor: Primary C3 deficiency is an extremely rare autosomalrecessive disease, with fewer than 50 families described worldwide. Plasma and intracellular C3 are considered B-cell receptor (BCR) and T-cell receptor (TCR) costimulators, respectively, but their contribution to lymphocyte biology remains obscure, particularly in humans. Reduced plasma C3 can be caused not only by primary C3 deficiency, due to loss-of-function C3 mutations, but also by secondary C3 deficiency or C3 consumption, due to gain-of-function C3 mutations or due to mutations in C3 regulators such as complement Factor I (CFI). We reasoned that comparing Band T-cell differentiation and function in primary and secondary plasma C3 deficiency might help to understand the role of plasma and intracellular C3 in adaptive immunity. We report the immunological features of lymphocytes from 9 individuals with low plasma C3 belonging to 6 families, with mutations causing primary or secondary C3 deficiency and, in some cases, chronic kidney disease stages 1 to 3 (see Fig E1,A, and Tables E1 and E3 in this article’s Online Repository at www.jacionline.org).


Annual Review of Immunology | 2018

Complement and the Regulation of T Cell Responses

Erin E. West; Martin Kolev; Claudia Kemper

The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complements role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.


The Journal of Pathology | 2016

Experimentally-induced anti-myeloperoxidase vasculitis does not require properdin, MASP-2 or bone marrow-derived C5.

Simon Freeley; Reena J. Popat; Kiran Parmar; Martin Kolev; Beverley J. Hunt; Cordula M. Stover; Willhelm Schwaeble; Claudia Kemper; Michael G. Robson

Anti‐neutrophil cytoplasmic antibody vasculitis is a systemic autoimmune disease with glomerulonephritis and pulmonary haemorrhage as major clinical manifestations. The name reflects the presence of autoantibodies to myeloperoxidase and proteinase‐3, which bind to both neutrophils and monocytes. Evidence of the pathogenicity of these autoantibodies is provided by the observation that injection of anti‐myeloperoxidase antibodies into mice causes a pauci‐immune focal segmental necrotizing glomerulonephritis which is histologically similar to the changes seen on renal biopsy in patients. Previous studies in this model have implicated the alternative pathway of complement activation and the anaphylatoxin C5a. Despite this progress, the factors that initiate complement activation have not been defined. In addition, the relative importance of bone marrow‐derived and circulating C5 is not known. This is of interest given the recently identified roles for complement within leukocytes. We induced anti‐myeloperoxidase vasculitis in mice and confirmed a role for complement activation by demonstrating protection in C3‐deficient mice. We showed that neither MASP‐2‐ nor properdin‐deficient mice were protected, suggesting that alternative pathway activation does not require properdin or the lectin pathway. We induced disease in bone marrow chimaeric mice and found that circulating and not bone marrow‐derived C5 was required for disease. We have therefore excluded properdin and the lectin pathway as initiators of complement activation and this means that future work should be directed at other potential factors within diseased tissue. In addition, in view of our finding that circulating and not bone marrow‐derived C5 mediates disease, therapies that decrease hepatic C5 secretion may be considered as an alternative to those that target C5 and C5a.


Methods of Molecular Biology | 2014

Detection of cell membrane-bound CD46 using flow cytometry.

Martin Kolev; Claudia Kemper

CD46 is an important regulator of the complement system by preventing unwanted deposition of the complement activation products and opsonins C3b/C4b onto self-tissue. Recently, intracellular signals mediated by CD46 activation on several distinct human cell types have demonstrated that CD46 also plays decisive roles in immuneregulation. The growing recognition of CD46 as key regulator in several vital biological processes, led to increased demand in sensitive methods for monitoring CD46 expression and changes thereof on cells and in tissues. Here we describe a method, which allows for studying CD46 expression on the surface of cells using specific antibodies in combination with fluorescence-activated cell sorting (FACS) analysis.


Methods of Molecular Biology | 2014

Functional analysis of CD59 using complement-dependent cytotoxicity assay

Martin Kolev

CD59 overexpression has been shown to confer the resistance of tumors to complement lysis. Complement lysis is one of the two major killing mechanisms of therapeutic anticancer antibodies. This chapter provides a method that allows studying the extent of complement protection of tumors by CD59.

Collaboration


Dive into the Martin Kolev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin E. West

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John P. Atkinson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge