Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Konrad is active.

Publication


Featured researches published by Martin Konrad.


Nature Genetics | 2001

Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure

Ralf Birkenhäger; Edgar A. Otto; Maria J. Schürmann; Martin Vollmer; Eva Maria Ruf; Irina Maier-Lutz; Frank Beekmann; Andrea Fekete; Heymut Omran; Delphine Feldmann; David V. Milford; Nicola Jeck; Martin Konrad; Daniel Landau; N.V.A.M. Knoers; Corinne Antignac; Ralf Sudbrak; Andreas Kispert; Friedhelm Hildebrandt

Antenatal Bartter syndrome (aBS) comprises a heterogeneous group of autosomal recessive salt-losing nephropathies. Identification of three genes that code for renal transporters and channels as responsible for aBS has resulted in new insights into renal salt handling, diuretic action and blood-pressure regulation. A gene locus of a fourth variant of aBS called BSND, which in contrast to the other forms is associated with sensorineural deafness (SND) and renal failure, has been mapped to chromosome 1p. We report here the identification by positional cloning, in a region not covered by the human genome sequencing projects, of a new gene, BSND, as the cause of BSND. We examined ten families with BSND and detected seven different mutations in BSND that probably result in loss of function. In accordance with the phenotype, BSND is expressed in the thin limb and the thick ascending limb of the loop of Henle in the kidney and in the dark cells of the inner ear. The gene encodes a hitherto unknown protein with two putative transmembrane α-helices and thus might function as a regulator for ion-transport proteins involved in aBS, or else as a new transporter or channel itself.


American Journal of Human Genetics | 2006

Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement

Martin Konrad; André Schaller; Dominik Seelow; Amit V. Pandey; Siegfried Waldegger; Annegret Lesslauer; Helga Vitzthum; Yoshiro Suzuki; John M. Luk; Christian Becker; Karl P. Schlingmann; Marcel Schmid; Juan Rodriguez-Soriano; Gema Ariceta; Francisco Cano; Ricardo Enriquez; Harald Jüppner; Sevcan A. Bakkaloglu; Matthias A. Hediger; Sabina Gallati; Stephan C. F. Neuhauss; Peter Nürnberg; Stefanie Weber

Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.


The New England Journal of Medicine | 2011

Mutations in CYP24A1 and Idiopathic Infantile Hypercalcemia

Karl P. Schlingmann; Martin Kaufmann; Stefanie Weber; Andrew Irwin; Caroline Goos; Ulrike John; Joachim Misselwitz; Günter Klaus; Eberhard Kuwertz-Bröking; Henry Fehrenbach; Anne M. Wingen; Tulay Guran; Joost G. J. Hoenderop; René J. M. Bindels; David E. Prosser; Glenville Jones; Martin Konrad

BACKGROUND Vitamin D supplementation for the prevention of rickets is one of the oldest and most effective prophylactic measures in medicine, having virtually eradicated rickets in North America. Given the potentially toxic effects of vitamin D, the recommendations for the optimal dose are still debated, in part owing to the increased incidence of idiopathic infantile hypercalcemia in Britain in the 1950s during a period of high vitamin D supplementation in fortified milk products. We investigated the molecular basis of idiopathic infantile hypercalcemia, which is characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. METHODS We used a candidate-gene approach in a cohort of familial cases of typical idiopathic infantile hypercalcemia with suspected autosomal recessive inheritance. Identified mutations in the vitamin D-metabolizing enzyme CYP24A1 were evaluated with the use of a mammalian expression system. RESULTS Sequence analysis of CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, the key enzyme of 1,25-dihydroxyvitamin D(3) degradation, revealed recessive mutations in six affected children. In addition, CYP24A1 mutations were identified in a second cohort of infants in whom severe hypercalcemia had developed after bolus prophylaxis with vitamin D. Functional characterization revealed a complete loss of function in all CYP24A1 mutations. CONCLUSIONS The presence of CYP24A1 mutations explains the increased sensitivity to vitamin D in patients with idiopathic infantile hypercalcemia and is a genetic risk factor for the development of symptomatic hypercalcemia that may be triggered by vitamin D prophylaxis in otherwise apparently healthy infants.


Journal of Clinical Investigation | 2008

Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex

Jianghui Hou; Aparna Renigunta; Martin Konrad; Antonio S. Gomes; Eveline E. Schneeberger; David L. Paul; Siegfried Waldegger; Daniel A. Goodenough

Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl(-) blocker, whereas CLDN16 functioned as a Na(+) channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl(-) permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.


The American Journal of Medicine | 2002

Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies

Melanie Peters; Nikola Jeck; Stephan C. Reinalter; Andreas Leonhardt; Burkhard Tönshoff; G.ünter Klaus; Martin Konrad; Hannsjörg W. Seyberth

PURPOSE Hypokalemic salt-losing tubulopathies (Bartter-like syndromes) comprise a set of clinically and genetically distinct inherited renal disorders. Mutations in four renal membrane proteins involved in electrolyte reabsorption have been identified in these disorders: the furosemide-sensitive sodium-potassium-chloride cotransporter NKCC2, the potassium channel ROMK, the chloride channel ClC-Kb, and the thiazide-sensitive sodium-chloride cotransporter NCCT. The aim of this study was to characterize the clinical features associated with each mutation in a large cohort of genetically defined patients. PATIENTS AND METHODS The phenotypic characteristics of 65 patients with molecular defects in NKCC2, ROMK, ClC-Kb, or NCCT were collected retrospectively. RESULTS ROMK and NKCC2 patients presented with polyhydramnios, nephrocalcinosis, and hypo- or isosthenuria. Hypokalemia was less severe in the ROMK patients compared with the NKCC2 patients. In contrast, NCCT patients had hypocalciuria, hypomagnesemia, and marked hypokalemia. While this dissociation of renal calcium and magnesium handling was also observed in some ClC-Kb patients, a few ClC-Kb patients presented with hypercalciuria and hypo- or isosthenuria. CONCLUSIONS ROMK, NKCC2, and NCCT mutations usually have uniform clinical presentations, whereas mutations in ClC-Kb occasionally lead to phenotypic overlaps with the NCCT or, less commonly, with the ROMK/NKCC2 cohort. Based on these results, we propose an algorithm for the molecular diagnosis of hypokalemic salt-losing tubulopathies.


Nature Genetics | 2012

KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron

Hélène Louis-Dit-Picard; Julien Barc; Daniel Trujillano; Stéphanie Miserey-Lenkei; Nabila Bouatia-Naji; Olena Pylypenko; Geneviève Beaurain; Amélie Bonnefond; Olivier Sand; Christophe Simian; Emmanuelle Vidal-Petiot; Christelle Soukaseum; Chantal Mandet; Françoise Broux; Olivier Chabre; Michel Delahousse; V. Esnault; Béatrice Fiquet; Pascal Houillier; Corinne Isnard Bagnis; Jens Koenig; Martin Konrad; Paul Landais; Chebel Mourani; Patrick Niaudet; Vincent Probst; Christel Thauvin; Robert J. Unwin; Steven D. Soroka; Georg B. Ehret

Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na+-Cl− cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure.


Pediatric Research | 2000

Mutations in the chloride channel gene, CLCNKB, leading to a mixed bartter-gitelman phenotype

Nikola Jeck; Martin Konrad; Melanie Peters; Stefanie Weber; Klaus E. Bonzel; Hannsjörg W. Seyberth

Gitelman syndrome is an inherited renal disorder characterized by impaired NaCl reabsorption in the distal convoluted tubule and secondary hypokalemic alkalosis. In clinical practice, it is distinguished from other hypokalemic tubulopathies by the presence of both hypomagnesemia and normocalcemic hypocalciuria. To date, only mutations in a single gene encoding the thiazide-sensitive NaCl cotransporter have been found as the molecular basis of GS. We describe three unrelated patients presenting with the typical laboratory findings of GS. Mutational analysis in these patients revealed no abnormality in the SLC12A3 gene. Instead, all patients were found to carry previously described mutations in the CLCNKB gene, which encodes the kidney-specific chloride channel ClC-Kb, raising the possibility of genetic heterogeneity. Review of the medical histories revealed manifestation of the disease within the first year of life in all cases. Clinical presentation included episodes of dehydration, weakness, and failure to thrive, much more suggestive of classic Bartter syndrome than of GS. The coexistence of hypomagnesemia and hypocalciuria was not present from the beginning. In the follow-up, however, a drop of both parameters below normal range was a consistent finding reflecting a transition from cBS to GS phenotype. The phenotypic overlap may indicate a physiologic cooperation of the apical thiazide-sensitive NaCl cotransporter and the basolateral chloride channel for salt reabsorption in the distal convoluted tubule.


American Journal of Human Genetics | 1998

Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome.

Rosa Vargas-Poussou; Delphine Feldmann; Martin Vollmer; Martin Konrad; Lisa Kelly; Lambertus P. van den Heuvel; Lamia Tebourbi; Matthias Brandis; Lothar Károlyi; Steven C. Hebert; Henny H. Lemmink; Georges Deschênes; Friedhelm Hildebrandt; Hannsjörg W. Seyberth; Lisa M. Guay-Woodford; Nine V.A.M. Knoers; Corinne Antignac

Antenatal Bartter syndrome is a variant of inherited renal-tubular disorders associated with hypokalemic alkalosis. This disorder typically presents as a life-threatening condition beginning in utero, with marked fetal polyuria that leads to polyhydramnios and premature delivery. Another hallmark of this variant is a marked hypercalciuria and, as a secondary consequence, the development of nephrocalcinosis and osteopenia. We have analyzed 15 probands belonging to 13 families and have performed SSCP analysis of the coding sequence and the exon-intron boundaries of the NKCC2 gene; and we report 14 novel mutations in patients with antenatal Bartter syndrome, as well as the identification of three isoforms of human NKCC2 that arise from alternative splicing.


Kidney International | 2012

Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy.

Oliver Gross; Christoph Licht; Hans J. Anders; Bernd Hoppe; Bodo B. Beck; Burkhard Tönshoff; Britta Höcker; Simone Wygoda; Jochen H. H. Ehrich; Lars Pape; Martin Konrad; Wolfgang Rascher; Jörg Dötsch; Dirk E. Müller-Wiefel; Peter F. Hoyer; Bertrand Knebelmann; Yves Pirson; Jean-Pierre Grünfeld; Patrick Niaudet; Pierre Cochat; Laurence Heidet; Said Lebbah; Roser Torra; Tim Friede; Katharina Lange; Gerhard A. Müller; Manfred Weber

Alport syndrome inevitably leads to end-stage renal disease and there are no therapies known to improve outcome. Here we determined whether angiotensin-converting enzyme inhibitors can delay time to dialysis and improve life expectancy in three generations of Alport families. Patients were categorized by renal function at the initiation of therapy and included 33 with hematuria or microalbuminuria, 115 with proteinuria, 26 with impaired renal function, and 109 untreated relatives. Patients were followed for a period whose mean duration exceeded two decades. Untreated relatives started dialysis at a median age of 22 years. Treatment of those with impaired renal function significantly delayed dialysis to a median age of 25, while treatment of those with proteinuria delayed dialysis to a median age of 40. Significantly, no patient with hematuria or microalbuminuria advanced to renal failure so far. Sibling pairs confirmed these results, showing that earlier therapy in younger patients significantly delayed dialysis by 13 years compared to later or no therapy in older siblings. Therapy significantly improved life expectancy beyond the median age of 55 years of the no-treatment cohort. Thus, Alport syndrome is treatable with angiotensin-converting enzyme inhibition to delay renal failure and therapy improves life expectancy in a time-dependent manner. This supports the need for early diagnosis and early nephroprotective therapy in oligosymptomatic patients.


Journal of The American Society of Nephrology | 2005

Novel TRPM6 Mutations in 21 Families with Primary Hypomagnesemia and Secondary Hypocalcemia

Karl P. Schlingmann; Martin C. Sassen; Stefanie Weber; Ulla Pechmann; Kerstin Kusch; Lutz Pelken; Daniel Lotan; Maria Syrrou; Jeffrey J. Prebble; David E. C. Cole; Daniel Metzger; Shamima Rahman; Toshihiro Tajima; San-Ging Shu; Siegfried Waldegger; Hannsjoerg W. Seyberth; Martin Konrad

Primary hypomagnesemia with secondary hypocalcemia is a rare autosomal recessive disorder characterized by profound hypomagnesemia associated with hypocalcemia. Pathophysiology is related to impaired intestinal absorption of magnesium accompanied by renal magnesium wasting as a result of a reabsorption defect in the distal convoluted tubule. Recently, mutations in the TRPM6 gene coding for TRPM6, a member of the transient receptor potential (TRP) family of cation channels, were identified as the underlying genetic defect. Here, the results of a TRPM6 mutational analysis of 21 families with 28 affected individuals are presented. In this large patient cohort, a retrospective clinical evaluation based on a standardized questionnaire was also performed. Genotype analysis revealed TRPM6 mutations in 37 of 42 expected mutant alleles. Sixteen new TRPM6 mutations were identified, including stop mutations, frame-shift mutations, splice-site mutations, and deletions of exons. Electrophysiologic analysis of mutated ion channels after heterologous expression in Xenopus oocytes proved complete loss of function of TRPM6. Clinical evaluation revealed a homogeneous clinical picture at manifestation with onset in early infancy with generalized cerebral convulsions. Initial laboratory evaluation yielded extremely low serum magnesium levels, low serum calcium levels, and inadequately low parathyroid hormone levels. Treatment usually consisted of acute intravenous magnesium supplementation leading to relief of clinical symptoms and normocalcemia, followed by lifelong oral magnesium supplementation. Serum magnesium levels remained in the subnormal range despite adequate therapy. This is best explained by a disturbed magnesium conservation in the distal convoluted tubule, which emerged in all patients upon magnesium supplementation. Delay of diagnosis resulted in permanent neurologic damage in three patients.

Collaboration


Dive into the Martin Konrad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefanie Weber

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikola Jeck

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgitta Kranz

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bernd Hoppe

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar

Lars Pape

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge