Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Krallinger is active.

Publication


Featured researches published by Martin Krallinger.


Genome Biology | 2008

Overview of the protein-protein interaction annotation extraction task of BioCreative II

Martin Krallinger; Florian Leitner; Carlos Rodríguez-Penagos; Alfonso Valencia

Background:The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing.Results:We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task, based on the main steps of a manual protein interaction annotation workflow. It was structured into four distinct subtasks related to: (a) detection of protein interaction-relevant articles; (b) extraction and normalization of protein interaction pairs; (c) retrieval of the interaction detection methods used; and (d) retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt, a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best summarized a given interaction, implying that many of the automatically extracted ones could contain interaction information but did not correspond to the most informative sentences.Conclusion:The BioCreative II PPI task is the first attempt to compare the performance of text-mining tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and then linking them to their database records. Some limitations were also encountered when using a single (and possibly incomplete) reference database for protein normalization or when limiting search for interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant) and previously known interactions adds additional complexity to these tasks.


Genome Biology | 2008

Linking genes to literature: text mining, information extraction, and retrieval applications for biology

Martin Krallinger; Alfonso Valencia; Lynette Hirschman

Efficient access to information contained in online scientific literature collections is essential for life science research, playing a crucial role from the initial stage of experiment planning to the final interpretation and communication of the results. The biological literature also constitutes the main information source for manual literature curation used by expert-curated databases. Following the increasing popularity of web-based applications for analyzing biological data, new text-mining and information extraction strategies are being implemented. These systems exploit existing regularities in natural language to extract biologically relevant information from electronic texts automatically. The aim of the BioCreative challenge is to promote the development of such tools and to provide insight into their performance. This review presents a general introduction to the main characteristics and applications of currently available text-mining systems for life sciences in terms of the following: the type of biological information demands being addressed; the level of information granularity of both user queries and results; and the features and methods commonly exploited by these applications. The current trend in biomedical text mining points toward an increasing diversification in terms of application types and techniques, together with integration of domain-specific resources such as ontologies. Additional descriptions of some of the systems discussed here are available on the internet http://zope.bioinfo.cnio.es/bionlp_tools/.


Genome Biology | 2005

Text-mining and information-retrieval services for molecular biology.

Martin Krallinger; Alfonso Valencia

Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators.


BMC Bioinformatics | 2011

The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

Martin Krallinger; Miguel Vazquez; Florian Leitner; David Salgado; Andrew Chatr-aryamontri; Andrew Winter; Livia Perfetto; Leonardo Briganti; Luana Licata; Marta Iannuccelli; Luisa Castagnoli; Gianni Cesareni; Mike Tyers; Gerold Schneider; Fabio Rinaldi; Robert Leaman; Graciela Gonzalez; Sérgio Matos; Sun Kim; W. John Wilbur; Luis Mateus Rocha; Hagit Shatkay; Ashish V. Tendulkar; Shashank Agarwal; Feifan Liu; Xinglong Wang; Rafal Rak; Keith Noto; Charles Elkan; Zhiyong Lu

BackgroundDetermining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.ResultsA total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthews Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%.ConclusionsThe results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows.


BMC Bioinformatics | 2005

Evaluation of BioCreAtIvE assessment of task 2.

Christian Blaschke; Eduardo Andres Leon; Martin Krallinger; Alfonso Valencia

BackgroundMolecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed.ResultsThe Critical Assessment for Information Extraction in Biology (BioCreAtIvE) contest consists of a community wide competition aiming to evaluate different strategies for text mining tools, as applied to biomedical literature. We report on task two which addressed the automatic extraction and assignment of Gene Ontology (GO) annotations of human proteins, using full text articles. The predictions of task 2 are based on triplets of protein – GO term – article passage. The annotation-relevant text passages were returned by the participants and evaluated by expert curators of the GO annotation (GOA) team at the European Institute of Bioinformatics (EBI). Each participant could submit up to three results for each sub-task comprising task 2. In total more than 15,000 individual results were provided by the participants. The curators evaluated in addition to the annotation itself, whether the protein and the GO term were correctly predicted and traceable through the submitted text fragment.ConclusionConcepts provided by GO are currently the most extended set of terms used for annotating gene products, thus they were explored to assess how effectively text mining tools are able to extract those annotations automatically. Although the obtained results are promising, they are still far from reaching the required performance demanded by real world applications. Among the principal difficulties encountered to address the proposed task, were the complex nature of the GO terms and protein names (the large range of variants which are used to express proteins and especially GO terms in free text), and the lack of a standard training set. A range of very different strategies were used to tackle this task. The dataset generated in line with the BioCreative challenge is publicly available and will allow new possibilities for training information extraction methods in the domain of molecular biology.


Journal of Cheminformatics | 2015

The CHEMDNER corpus of chemicals and drugs and its annotation principles

Martin Krallinger; Obdulia Rabal; Florian Leitner; Miguel Vazquez; David Salgado; Zhiyong Lu; Robert Leaman; Yanan Lu; Donghong Ji; Daniel M. Lowe; Roger A. Sayle; Riza Theresa Batista-Navarro; Rafal Rak; Torsten Huber; Tim Rocktäschel; Sérgio Matos; David Campos; Buzhou Tang; Hua Xu; Tsendsuren Munkhdalai; Keun Ho Ryu; S. V. Ramanan; Senthil Nathan; Slavko Žitnik; Marko Bajec; Lutz Weber; Matthias Irmer; Saber A. Akhondi; Jan A. Kors; Shuo Xu

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/


Drug Discovery Today | 2005

Text-mining approaches in molecular biology and biomedicine.

Martin Krallinger; Ramon Alonso-Allende Erhardt; Alfonso Valencia

Biomedical articles provide functional descriptions of bioentities such as chemical compounds and proteins. To extract relevant information using automatic techniques, text-mining and information-extraction approaches have been developed. These technologies have a key role in integrating biomedical information through analysis of scientific literature. In this article, important applications such as the identification of biologically relevant entities in free text and the construction of literature-based networks of protein-protein interactions will be introduced. Also, the use of text mining to aid the interpretation of microarray data and the analysis of pathology reports will be discussed. Finally, we will consider the recent evolution of this field and the efforts for community-based evaluations.


Database | 2012

Text mining for the biocuration workflow

Lynette Hirschman; Gully A. P. C. Burns; Martin Krallinger; Cecilia N. Arighi; K. Bretonnel Cohen; Alfonso Valencia; Cathy H. Wu; Andrew Chatr-aryamontri; Karen G. Dowell; Eva Huala; Anália Lourenço; Robert Nash; Anne-Lise Veuthey; Thomas C. Wiegers; Andrew Winter

Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2010

An Overview of BioCreative II.5

Florian Leitner; Scott A. Mardis; Martin Krallinger; Gianni Cesareni; Lynette Hirschman; Alfonso Valencia

We present the results of the BioCreative II.5 evaluation in association with the FEBS Letters experiment, where authors created Structured Digital Abstracts to capture information about protein-protein interactions. The BioCreative II.5 challenge evaluated automatic annotations from 15 text mining teams based on a gold standard created by reconciling annotations from curators, authors, and automated systems. The tasks were to rank articles for curation based on curatable protein-protein interactions; to identify the interacting proteins (using UniProt identifiers) in the positive articles (61); and to identify interacting protein pairs. There were 595 full-text articles in the evaluation test set, including those both with and without curatable protein interactions. The principal evaluation metrics were the interpolated area under the precision/recall curve (AUC iP/R), and (balanced) F-measure. For article classification, the best AUC iP/R was 0.70; for interacting proteins, the best system achieved good macroaveraged recall (0.73) and interpolated area under the precision/recall curve (0.58), after filtering incorrect species and mapping homonymous orthologs; for interacting protein pairs, the top (filtered, mapped) recall was 0.42 and AUC iP/R was 0.29. Ensemble systems improved performance for the interacting protein task.


Database | 2013

BioC: a minimalist approach to interoperability for biomedical text processing

Donald C. Comeau; Rezarta Islamaj Doğan; Paolo Ciccarese; Kevin Bretonnel Cohen; Martin Krallinger; Florian Leitner; Zhiyong Lu; Yifan Peng; Fabio Rinaldi; Manabu Torii; Alfonso Valencia; Karin Verspoor; Thomas C. Wiegers; Cathy H. Wu; W. John Wilbur

A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/

Collaboration


Dive into the Martin Krallinger's collaboration.

Top Co-Authors

Avatar

Alfonso Valencia

Barcelona Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar

Florian Leitner

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy H. Wu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Lu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Vazquez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Bretonnel Cohen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

W. John Wilbur

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge