Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Kriebel is active.

Publication


Featured researches published by Martin Kriebel.


Molecular and Cellular Neuroscience | 2007

Neurofascin regulates the formation of gephyrin clusters and their subsequent translocation to the axon hillock of hippocampal neurons

Nadine Burkarth; Martin Kriebel; Eva Ursula Kranz; Hansjürgen Volkmer

Little is known about the role of cell adhesion molecules (CAMs) in inhibitory synapse development. In particular, a functional link between CAMs and the clustering of postsynaptic scaffold component gephyrin, which is a critical determinant of gamma-aminobutyric acid A (GABA) receptor clustering, still needs to be elaborated. At early stages of inhibitory synapse formation, gephyrin and CAM neurofascin are diffusely expressed in the soma of hippocampal neurons. Subsequently, gephyrin clusters become localized to the axon hillock and neurofascin is observed all over the soma including the axon hillock suggesting a function for neurofascin in gephyrin clustering. Transfection of expression vectors for different isoforms and mutants of neurofascin revealed that neurofascin is required for the formation of gephyrin clusters presumably dependent on extracellular interactions. Furthermore, expression of neurofascin is necessary for the translocation of gephyrin clusters to the axon hillock of hippocampal neurons as shown by shRNA-mediated knockdown. In addition, overexpression of an embryonic neurofascin isoform is sufficient for functional rescue after knockdown of endogenous neurofascin.


Journal of Biological Chemistry | 2011

The Cell Adhesion Molecule Neurofascin Stabilizes Axo-axonic GABAergic Terminals at the Axon Initial Segment

Martin Kriebel; Jennifer Metzger; Sabine Trinks; Deepti Chugh; Robert J. Harvey; Kirsten Harvey; Hansjuergen Volkmer

Cell adhesion molecules regulate synapse formation and maintenance via transsynaptic contact stabilization involving both extracellular interactions and intracellular postsynaptic scaffold assembly. The cell adhesion molecule neurofascin is localized at the axon initial segment of granular cells in rat dentate gyrus, which is mainly targeted by chandelier cells. Lentiviral shRNA-mediated knockdown of neurofascin in adult rat brain indicates that neurofascin regulates the number and size of postsynaptic gephyrin scaffolds, the number of GABAA receptor clusters as well as presynaptic glutamate decarboxylase-positive terminals at the axon initial segment. By contrast, overexpression of neurofascin in hippocampal neurons increases gephyrin cluster size presumably via stimulation of fibroblast growth factor receptor 1 signaling pathways.


The International Journal of Biochemistry & Cell Biology | 2012

Neurofascin: a switch between neuronal plasticity and stability.

Martin Kriebel; Jennifer Wuchter; Sabine Trinks; Hansjürgen Volkmer

Neurofascin (NF) is a cell surface protein belonging to the immunoglobulin superfamily (IgSF). Different polypeptides of 186, 180, 166 and 155 kDa are generated by alternative splicing. Expression of these isoforms is temporally and spatially regulated and can be roughly grouped into embryonic, adult and glial expression. NF interacts with many different interaction partners both extra- and intracellularly. Interactions of NF166 and NF180 selectively regulate mechanisms of plasticity like neurite outgrowth and the formation postsynaptic components. By contrast, NF155 and NF186 confer stabilization of neural structures by interaction with voltage-gated sodium channels and ankyrinG at axon initial segments (AIS) or nodes of Ranvier as well as neuron-glia interactions at the paranodes. Alternatively spliced isoforms of neurofascin may therefore balance dynamic and stabilizing mechanisms of the CNS.


Journal of Neurochemistry | 2007

Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway

Raino Kristian Hansen; Claus Christensen; Irina Korshunova; Martin Kriebel; Nadine Burkarth; Vladislav V. Kiselyov; Marianne Olsen; Søren Dinesen Østergaard; Arne Holm; Hansjiirgen Volkmer; Peter S. Walmod; Vladimir Berezin; Elisabeth Bock

A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I–F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 and ENFIN11) were confirmed to bind to F3I–F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through the fibroblast growth factor receptor, the Src‐related non‐receptor tyrosine kinase Fyn, and heterotrimeric G‐proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin, an inhibitor of certain heterotrimeric G‐proteins. Neurite outgrowth induced by trans‐homophilic NCAM was unaffected by the peptides, whereas knockdown of NCAM completely abrogated ENFIN2‐ and ENFIN11‐induced neuritogenesis. These observations suggest that ENFIN2 and ENFIN11 induce neurite outgrowth in an NCAM‐dependent manner through G‐protein‐coupled signal transduction pathways. Thus, ENFIN2 and ENFIN11 may be valuable for exploring this particular type of NCAM‐mediated signaling.


Neurobiology of Learning and Memory | 2014

Stress modulation of hippocampal activity – Spotlight on the dentate gyrus

MingXin Fa; Li Xia; Rachel Anunu; Orli Kehat; Martin Kriebel; Hansjürgen Volkmer; Gal Richter-Levin

The effects of stress on learning and memory are diverse, ranging from impairment to facilitation. Many studies emphasize the major role of the hippocampus, mainly its CA1 and CA3 areas, in the process of memory formation under emotional and stressful conditions. In the current review, we summarize work which suggests that the dentate gyrus (DG) of the hippocampus is likely to play a pivotal role in defining the impact of stress on hippocampal functioning. We describethe effects of stress on long term potentiation (LTP) and local circuit activity in the DG and the role of the amygdala in mediating these effects. As one of the brain regions known to have a high rate of adult neurogenesis, the effects of stress on DG neurogenesis will also be reviewed. Finally, we discuss exposure to stress during juvenility and its influence on the adult DG. The DG is a dynamic structure which is susceptible to stress. Under stressful conditions, its response is variable and complex, much like the behavioral outcomes of such circumstances. It is likely to significantly contribute to the diverse effects of stress on memory formation.


Developmental Biology | 2011

The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo

Tan H. Min; Martin Kriebel; Shirui Hou; Edgar M. Pera

Hedgehog (Hh) and Wnt proteins are important signals implicated in several aspects of embryonic development, including the early development of the central nervous system. We found that Xenopus Suppressor-of-fused (XSufu) affects neural induction and patterning by regulating the Hh/Gli and Wnt/β-catenin pathways. Microinjection of XSufu mRNA induced expansion of the epidermis at the expense of neural plate tissue and caused enlargement of the eyes. An antisense morpholino oligonucleotide against XSufu had the opposite effect. Interestingly, both gain- and loss-of-function experiments resulted in a posterior shift of brain markers, suggesting a biphasic effect of XSufu on anteroposterior patterning. XSufu blocked early Wnt/β-catenin signaling, as indicated by the suppression of XWnt8-induced secondary axis formation in mRNA-injected embryos, and activation of Wnt target genes in XSufu-MO-injected ectodermal explants. We show that XSufu binds to XGli1 and Xβ-catenin. In Xenopus embryos and mouse embryonic fibroblasts, Gli1 inhibits Wnt signaling under overexpression of β-catenin, whereas β-catenin stimulates Hh signaling under overexpression of Gli1. Notably, endogenous Sufu is critically involved in this crosstalk. The results suggest that XSufu may act as a common regulator of Hh and Wnt signaling and contribute to intertwining the two pathways.


Developmental Dynamics | 2007

Xeya3 regulates survival and proliferation of neural progenitor cells within the anterior neural plate of Xenopus embryos.

Martin Kriebel; Frank Müller; Thomas Hollemann

The transcriptional coactivater and tyrosine phosphatase eyes absent (eya) is vital for eye development in Drosophila. We identified a vertebrate member of the Eya family, Xeya3, which is expressed in the anterior neural plate, including the eye field. Overexpression of wild‐type Xeya3 or of a phosphatase‐negative version of Xeya3 creates massive enlargements of brain and retinal tissues, mainly caused by overproliferation of neural precursor cells. On the other hand, suppression of Xeya3 function induces local apoptosis within the sensorial layer of the anterior neuroectoderm. Thus, Xeya3 is key factor for the formation and size control of brain and eyes in vertebrates. Developmental Dynamics 236:1526–1534, 2007.


Journal of Biological Chemistry | 2009

Analysis of Non-canonical Fibroblast Growth Factor Receptor 1 (FGFR1) Interaction Reveals Regulatory and Activating Domains of Neurofascin

Katja Kirschbaum; Martin Kriebel; Eva Ursula Kranz; Oliver Pötz; Hansjürgen Volkmer

Fibroblast growth factor receptors (FGFRs) are important for many different mechanisms, including cell migration, proliferation, differentiation, and survival. Here, we show a new link between FGFR1 and the cell adhesion molecule neurofascin, which is important for neurite outgrowth. After overexpression in HEK293 cells, embryonal neurofascin isoform NF166 was able to associate with FGFR1, whereas the adult isoform NF186, differing from NF166 in additional extracellular sequences, was deficient. Pharmacological inhibitors and overexpression of dominant negative components of the FGFR signaling pathway pointed to the activation of FGFR1 after association with neurofascin in neurite outgrowth assays in chick tectal neurons and rat PC12-E2 cells. Both extra- and intracellular domains of embryonal neurofascin isoform NF166 were able to form complexes with FGFR1 independently. However, the cytosolic domain was both necessary and sufficient for the activation of FGFR1. Cytosolic serine residues 56 and 100 were shown to be essential for the neurite outgrowth-promoting activity of neurofascin, whereas both amino acid residues were dispensable for FGFR1 association. In conclusion, the data suggest a neurofascin intracellular domain, which activates FGFR1 for neurite outgrowth, whereas the extracellular domain functions as an additional, regulatory FGFR1 interaction domain in the course of development.


Neuropsychopharmacology | 2017

GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction

Rinki Saha; Stephanie Knapp; Darpan Chakraborty; Omer Horovitz; Anne Albrecht; Martin Kriebel; Hanoch Kaphzan; Ingrid Ehrlich; Hansjürgen Volkmer; Gal Richter-Levin

Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum–BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum–BLA–LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.


Molecular Neurobiology | 2016

Dentate Gyrus Local Circuit is Implicated in Learning Under Stress—a Role for Neurofascin

Femke M. P. Zitman; Morgan Lucas; Sabine Trinks; Laura Grosse-Ophoff; Martin Kriebel; Hansjürgen Volkmer; Gal Richter-Levin

The inhibitory synapses at the axon initial segment (AIS) of dentate gyrus granular cells are almost exclusively innervated by the axo-axonic chandelier interneurons. However, the role of chandelier neurons in local circuitry is poorly understood and controversially discussed. The cell adhesion molecule neurofascin is specifically expressed at the AIS. It is crucially required for the stabilization of axo-axonic synapses. Knockdown of neurofascin is therefore a convenient tool to interfere with chandelier input at the AIS of granular neurons of the dentate gyrus. In the current study, feedback and feedforward inhibition of granule cells was measured in the dentate gyrus after knockdown of neurofascin and concomitant reduction of axo-axonic input. Results show increased feedback inhibition as a result of neurofascin knockdown, while feedforward inhibition remained unaffected. This suggests that chandelier neurons are predominantly involved in feedback inhibition. Neurofascin knockdown rats also exhibited impaired learning under stress in the two-way shuttle avoidance task. Remarkably, this learning impairment was not accompanied by differences in electrophysiological measurements of dentate gyrus LTP. This indicates that the local circuit may be involved in (certain types) of learning.

Collaboration


Dive into the Martin Kriebel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Albrecht

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Ebel

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge