Martin L. Brady
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin L. Brady.
Journal of Neurosurgery | 2010
John H. Sampson; Gary E. Archer; Christoph Pedain; Eva Wembacher-Schröder; Manfred Westphal; Sandeep Kunwar; Michael A. Vogelbaum; April Coan; James E. Herndon; Raghu Raghavan; Martin L. Brady; David A. Reardon; Allan H. Friedman; Henry S. Friedman; M. Inmaculada Rodríguez-Ponce; Susan M. Chang; Stephan Mittermeyer; Davi Croteau; Raj K. Puri; James M. Markert; Michael D. Prados; Thomas C. Chen; Adam N. Mamelak; Timothy F. Cloughesy; John S. Yu; Kevin O. Lillehei; Joseph M. Piepmeier; Edward Pan; Frank D. Vrionis; H. Lee Moffitt
OBJECT Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. METHODS Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. RESULTS Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. CONCLUSIONS The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.
Neurosurgery | 2007
John H. Sampson; Martin L. Brady; Neil A. Petry; David Croteau; Allan H. Friedman; Henry S. Friedman; Terence Z. Wong; Darell D. Bigner; Ira Pastan; Raj K. Puri; Christoph Pedain
OBJECTIVE Convection-enhanced delivery (CED) holds tremendous potential for drug delivery to the brain. However, little is known about the volume of distribution achieved within human brain tissue or how target anatomy and catheter positioning influence drug distribution. The primary objective of this study was to quantitatively describe the distribution of a high molecular weight agent by CED relative to target anatomy and catheter position in patients with malignant gliomas. METHODS Seven adult patients with recurrent malignant gliomas underwent intracerebral infusion of the tumor-targeted cytotoxin, cintredekin besudotox, concurrently with 123I-labeled human serum albumin. High-resolution single-photon emission computed tomographic images were obtained at 24 and 48 hours and were coregistered with magnetic resonance imaging scans. The distribution of 123I-labeled human serum albumin relative to target anatomy and catheter position was analyzed. RESULTS Intracerebral CED infusions were well-tolerated and some resulted in a broad distribution of 123I-labeled human serum albumin, but target anatomy and catheter positioning had a significant influence on infusate distribution even within non-contrast-enhancing areas of brain. Intratumoral infusions were anisotropic and resulted in limited coverage of the enhancing tumor area and adjacent peritumoral regions. CONCLUSIONS CED has the potential to deliver high molecular weight agents into tumor-infiltrated brain parenchyma with volumes of distribution that are clinically relevant. Target tissue anatomy and catheter position are critical parameters in optimizing drug delivery.
Neuro-oncology | 2007
John H. Sampson; Raghu Raghavan; Martin L. Brady; James M. Provenzale; James E. Herndon; David Croteau; Allan H. Friedman; David A. Reardon; R. Edward Coleman; Terence Z. Wong; Darell D. Bigner; Ira Pastan; María Inmaculada Rodríguez-Ponce; Philipp Tanner; Raj K. Puri; Christoph Pedain
Convection-enhanced delivery (CED) is a novel drug delivery technique that uses positive infusion pressure to deliver therapeutic agents directly into the interstitial spaces of the brain. Despite the promise of CED, clinical trials have demonstrated that target-tissue anatomy and patient-specific physiology play a major role in drug distribution using this technique. In this study, we retrospectively tested the ability of a software algorithm using MR diffusion tensor imaging to predict patient-specific drug distributions by CED. A tumor-targeted cytotoxin, cintredekin besudotox (interleukin 13-PE38QQR), was coinfused with iodine 123-labeled human serum albumin (123I-HSA), in patients with recurrent malignant gliomas. The spatial distribution of 123I-HSA was then compared to a drug distribution simulation provided by the software algorithm. The algorithm had a high sensitivity (71.4%) and specificity (100%) for identifying the high proportion (7 of 14) of catheter trajectories that failed to deliver drug into the desired anatomical region (p = 0.021). This usually occurred when catheter trajectories crossed deep sulci, resulting in leak of the infusate into the subarachnoid cerebrospinal fluid space. The mean concordance of the volume of distribution at the 50% isodose level between the actual 123I-HSA distribution and simulation was 65.75% (95% confidence interval [CI], 52.0%-79.5%), and the mean maximal inplane deviation was less than 8.5 mm (95% CI, 4.0-13.0 mm). The use of this simulation algorithm was considered clinically useful in 84.6% of catheters. Routine use of this algorithm, and its further developments, should improve prospective selection of catheter trajectories, and thereby improve the efficacy of drugs delivered by this promising technique.
Neurosurgery | 2011
John H. Sampson; Martin L. Brady; Raghu Raghavan; Ankit I. Mehta; Allan H. Friedman; David A. Reardon; Neil A. Petry; Daniel P. Barboriak; Terence Z. Wong; Michael R. Zalutsky; Denise Lally-Goss; Darell D. Bigner
BACKGROUND:Convection-enhanced delivery (CED) permits site-specific therapeutic drug delivery within interstitial spaces at increased dosages through circumvention of the blood-brain barrier. CED is currently limited by suboptimal methodologies for monitoring the delivery of therapeutic agents that would permit technical optimization and enhanced therapeutic efficacy. OBJECTIVE:To determine whether a readily available small-molecule MRI contrast agent, gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), could effectively track the distribution of larger therapeutic agents. METHODS:Gd-DTPA was coinfused with the larger molecular tracer, 124I-labeled human serum albumin (124I-HSA), during CED of an EGFRvIII-specific immunotoxin as part of treatment for a patient with glioblastoma. RESULTS:Infusion of both tracers was safe in this patient. Analysis of both Gd-DTPA and 124I-HSA during and after infusion revealed a high degree of anatomical and volumetric overlap. CONCLUSION:Gd-DTPA may be able to accurately demonstrate the anatomic and volumetric distribution of large molecules used for antitumor therapy with high resolution and in combination with fluid-attenuated inversion recovery (FLAIR) imaging, and provide additional information about leaks into cerebrospinal fluid spaces and resection cavities. Similar studies should be performed in additional patients to validate our findings and help refine the methodologies we used.
Physics in Medicine and Biology | 2010
Raghu Raghavan; Samuel Mikaelian; Martin L. Brady; Zhi-Jian Chen
Directly injecting therapeutics into brain tissue has been investigated both experimentally and theoretically. Paul Morrison and others from the National Institutes of Health pointed out the importance of backflow along and outside a catheter inserted into the tissue, once steady state conditions have been reached. Here we investigate and extend their model. We begin with a reformulation of their results and demonstrate an exact solution that exhibits the scaling behavior of the model where the surrounding tissue medium is homogeneous and isotropic. We report on experimental tests of our predictions in agarose gels. We describe the limitations of the assumptions used and the utility of our reformulation. Extensions of the model, including improvements on some of its crude assumptions and generalizations to inhomogeneous media, will be submitted separately.
Physics in Medicine and Biology | 2011
Raghu Raghavan; Martin L. Brady
Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model-absent from previous ones, but requirements for any useful simulation-are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.
Cell Transplantation | 2010
Marina E. Emborg; Valerie Joers; Ronald Fisher; Kevin Brunner; Victoria Carter; Chris Ross; Raghu Raghavan; Martin L. Brady; James Raschke; Ken Kubota; Andrew L. Alexander
During in vivo intracerebral infusions, the ability to perform accurate targeting towards a 3D-specific point allows control of the anatomical variable and identification of the effects of variations in other factors. Intraoperative MRI navigation systems are currently being used in the clinic, yet their use in nonhuman primates and MRI monitoring of intracerebral infusions has not been reported. In this study rhesus monkeys were placed in a MRI-compatible stereotaxic frame. T1 MRIs in the three planes were obtained in a 3.0T GE scanner to identify the target and plan the trajectory to ventral postcommisural putamen. A craniotomy was performed under sterile surgical conditions at the trajectory entry point. A modified MRI-compatible trajectory guide base (Medtronic Inc.) was secured above the cranial opening and the alignment stem applied. Scans were taken to define the position of the alignment stem. When the projection of the catheter in the three planes matched the desired trajectory to the target, the base was locked in position. A catheter replaced the alignment stem and was slowly introduced to the final target structure. Additional scans were performed to confirm trajectory and during the infusion of a solution of gadoteridol (ProHance, Bracco Diagnostics; 2 mM/L) and bromophenol blue (0.16 mg/ml) in saline. Monitoring of the pressure in the infusion lines was performed using pressure monitoring and infusion pump controller system (Engineering Resources Group Inc.) in combination with a MRI-compatible infusion pump (Harvard). MRI during infusion confirmed successful targeting and matched postmortem visualization of bromophenol blue. Assessment of the accuracy of the targeting revealed an overall 3D mean ± SD distance error of 1.2 ± 0.6 mm and angular distance error of 0.9 ± 0.5 mm. Our results in nonhuman primates confirm the accuracy of intraoperative MRI intracerebral navigation combined with an adaptable, pivot point-based targeting system and validates its use for preclinical intracerebral procedures.
Stereotactic and Functional Neurosurgery | 2013
Martin L. Brady; Raghu Raghavan; Andrew L. Alexander; Ken Kubota; Karl Sillay; Marina E. Emborg
Background: New strategies aiming to treat Parkinson’s disease, such as delivery of trophic factors via protein infusion or gene transfer, depend upon localized intracerebral infusion, mainly into the putamen nucleus. Convection-enhanced delivery (CED) has been proposed as a method to improve intracerebral distribution of therapies. Yet analysis of controversial results during the clinical translation of these strategies suggests that intracerebral misdistribution of infusate may have affected the outcomes by limiting the amount of treatment into the target region. Objectives: This study aimed to identify possible pathways of infusate loss and their relative impact in the success of targeted CED into the postcommissural ventral putamen nucleus. Methods: Thirteen adult macaque monkeys received intraputaminal CED infusions of 100 µl of 2.0 mM gadoteridol and bromophenol blue (0.16 mg/ml) solution at a rate of 1.0 µl/min under intraoperative magnetic resonance imaging (MRI) guidance. Quantitative maps of infusate concentration were computed at 10-min intervals throughout the procedure in a 3-Tesla MRI scanner. The fraction of tracer lost from the putamen as well as the path of loss were evaluated and quantified for each infusion. Results: All injections (total 22) were successfully placed in the ventral postcommissural putamen nucleus. Four major paths of infusate loss from the putamen were observed: overflow across putamen boundaries, perivascular flow along large blood vessels, backflow along the inserted catheter and catheter tract leakage into the vacated catheter tract upon catheter removal. Overflow loss was observed within the first 30 µl of infusion in all cases. Measurable tracer loss following the path of an artery out of the putamen was observed in 15 cases, and in 8 of these cases, the loss was greater than 10% of infusate. Backflow that exited the putamen was observed in 4 cases and led to large loss of infusate (80% in 1 case) into the corona radiata. Loss into the vacated catheter tract amounted only to a few microliters. Conclusions: Our analysis demonstrates that after controlling for targeting, catheter type, infusion rate and infusate, the main issues during surgical planning are the identification of appropriate infusate volume that matches the target area, as well as mapping the regional vasculature as it may become a pathway for infusate loss. Most importantly, these results underscore the significance of presurgical planning for catheter placement and infusion, and the value of imaging guidance to ensure targeting accuracy.
Toxins | 2011
Ankit I. Mehta; Bryan D. Choi; Raghu Raghavan; Martin L. Brady; Allan H. Friedman; Darell D. Bigner; Ira Pastan; John H. Sampson
Drug delivery of immunotoxins to brain tumors circumventing the blood brain barrier is a significant challenge. Convection-enhanced delivery (CED) circumvents the blood brain barrier through direct intracerebral application using a hydrostatic pressure gradient to percolate therapeutic compounds throughout the interstitial spaces of infiltrated brain and tumors. The efficacy of CED is determined through the distribution of the therapeutic agent to the targeted region. The vast majority of patients fail to receive a significant amount of coverage of the area at risk for tumor recurrence. Understanding this challenge, it is surprising that so little work has been done to monitor the delivery of therapeutic agents using this novel approach. Here we present a review of imaging in convection enhanced delivery monitoring of toxins in humans, and discuss future challenges in the field.
IEEE Transactions on Biomedical Engineering | 2011
Martin L. Brady; Raghu Raghavan; Zhi-jian Chen; William C. Broaddus
The technique of direct infusions into brain tissue of therapeutic molecules that would otherwise not adequately cross the blood-brain barrier (BBB) continues to be used in clinical trials. As part of our research into understanding the transport of fluids and molecules in brain tissue, we performed infusions of a saline solution of the magnetic resonance (MR) marker Gadodiamide( Omniscan) into porcine brains. We use quantitative concentration measurements of contrast reagents from MR images to both measure the distribution profile of the infusate and to elucidate important determinants of fluid flow during infusions into brain parenchyma. Based on this, and from other MRI data collected during infusion, we give preliminary results for the quantification of the expansion of the volume fraction of the interstitium particularly in white matter regions of brain during infusion-induced edema. We claim this expansion, rather than an anisotropy of fluid conductivity, makes white matter tracts a preferred pathway for flow. We also comment briefly on other determinants that are currently being pursued such as the influence of the cerebrospinal fluid and perivascular spaces that may be elucidated with quantitative tracking of tracer, but which need further studies.