Martin Laviale
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Laviale.
Archive | 2012
Soizic Morin; Arielle Cordonier; Isabelle Lavoie; Adeline Arini; Saúl Blanco; Thi Thuy Duong; Elisabet Tornés; Berta Bonet; Natàlia Corcoll; Leslie Faggiano; Martin Laviale; Florence Pérès; Eloy Bécares; Michel Coste; Agnès Feurtet-Mazel; Claude Fortin; Helena Guasch; Sergi Sabater
Diatoms play a key role in the functioning of streams, and their sensitivity to many environmental factors has led to the development of numerous diatom-based indices used in water quality assessment. Although diatom-based monitoring of metal contamination is not currently included in water quality monitoring programs, the effects of metals on diatom communities have been studied in many polluted watersheds as well as in laboratory experiments, underlying their high potential for metal contamination assessment. Here, we review the response of diatoms to metal pollution from individual level (e.g. size, growth form, and morphological abnormalities) to community structure (replacement of sensitive species by tolerant ones). These potential effects are then tested using a large, multi-country database combining diatom and metal information. Metal contamination proved to be a strong driver of the community structure, and enabled for the identification of tolerant species like Cocconeis placentula var. euglypta, Eolimna minima, Fragilaria gracilis, Nitzschia sociabilis, Pinnularia parvulissima, and Surirella angusta. Among the traits tested, diatom cell size and the occurrence of diatom deformities were found to be good indicators of high metal contamination. This work provides a basis for further use of diatoms as indicators of metal pollution.
Environmental Microbiology | 2015
Martin Laviale; Alexandre Barnett; João Ezequiel; Bernard Lepetit; Silja Frankenbach; Vona Méléder; João Serôdio; Johann Lavaud
Although estuarine microphytobenthos (MPB) is frequently exposed to excessive light and temperature conditions, little is known on their interactive effects on MPB primary productivity. Laboratory and in situ experiments were combined to investigate the short-term joint effects of high light (HL) and high temperature (37 °C versus 27 °C) on the operating efficiency of photoprotective processes [vertical migration versus non-photochemical quenching (NPQ)] exhibited by natural benthic diatom communities from two intertidal flats in France (FR) and Portugal (PT). A clear latitudinal pattern was observed, with PT biofilms being more resistant to HL stress, regardless the effect of temperature, and displaying a lower relative contribution of vertical migration to photoprotection and a stronger NPQ in situ. However, higher temperature leads to comparable effects, with photoinhibition increasing to about three times (i.e. from 3% to 10% and from 8% to 22% in PT and FR sites respectively). By using a number of methodological novelties in MPB research (lipid peroxidation quantification, Lhcx proteins immunodetection), this study brings a physiological basis to the previously reported depression of MPB photosynthetic productivity in summer. They emphasize the joint role of temperature and light in limiting, at least transiently (i.e. during emersion), MPB photosynthetic activity in situ.
Plant Physiology | 2013
João Serôdio; João Ezequiel; Joerg Frommlet; Martin Laviale; Johann Lavaud
Light-response curves of chlorophyll fluorescence are rapidly generated from independent, nonsequential measurements through the combined use of spatially separated beams of actinic light and fluorescence imaging. Light-response curves (LCs) of chlorophyll fluorescence are widely used in plant physiology. Most commonly, LCs are generated sequentially, exposing the same sample to a sequence of distinct actinic light intensities. These measurements are not independent, as the response to each new light level is affected by the light exposure history experienced during previous steps of the LC, an issue particularly relevant in the case of the popular rapid light curves. In this work, we demonstrate the proof of concept of a new method for the rapid generation of LCs from nonsequential, temporally independent fluorescence measurements. The method is based on the combined use of sample illumination with digitally controlled, spatially separated beams of actinic light and a fluorescence imaging system. It allows the generation of a whole LC, including a large number of actinic light steps and adequate replication, within the time required for a single measurement (and therefore named “single-pulse light curve”). This method is illustrated for the generation of LCs of photosystem II quantum yield, relative electron transport rate, and nonphotochemical quenching on intact plant leaves exhibiting distinct light responses. This approach makes it also possible to easily characterize the integrated dynamic light response of a sample by combining the measurement of LCs (actinic light intensity is varied while measuring time is fixed) with induction/relaxation kinetics (actinic light intensity is fixed and the response is followed over time), describing both how the response to light varies with time and how the response kinetics varies with light intensity.
European Journal of Phycology | 2014
Silja Frankenbach; Catarina Pais; Monica Martinez; Martin Laviale; João Ezequiel; João Serôdio
Vertical migration by diatoms is a well-known phenomenon, occurring in intertidal and subtidal benthic biofilms. It is partially endogenously driven, as cell movements can be observed in the absence of external stimuli such as light, temperature or water cover. Although vertical migration of diatoms under constant conditions has often been attributed to geotactic orientation, this hypothesis has never been experimentally demonstrated. Our study tested the gravitactic nature of the vertical migratory behaviour of benthic diatoms in sedimentary biofilms, using an experimental setup designed to distinguish gravitaxis from surface-oriented cell movements. The hourly variation of surface diatom biomass during migratory cycles was compared in homogenized sediment samples kept facing upwards (surface-oriented and gravity stimuli coinciding; controls) and facing sideways or downwards (surface-oriented and gravity stimuli not coinciding). During the experiments, sediment samples were kept in complete darkness in custom-made, sealed measuring chambers designed to avoid any contact with atmospheric air and the formation of physico-chemical gradients near the surface. Microalgal biomass was monitored non-intrusively using PAM fluorometry, by measuring dark-level fluorescence, Fo. The results showed a clear effect of sample orientation in relation to the gravitational stimulus. In the controls, a biphasic pattern in surface biomass was observed, with the formation of a clear biomass peak (three- to six-fold increase) followed by a slower decrease. In contrast, in samples facing sideways or downwards, surface biomass also varied but to a much lesser extent (typically < two-fold). These results strongly suggest that, in the absence of light, upward vertical migration of benthic diatoms is mostly guided by negative gravitaxis, supporting the often hypothesized capacity of these cells to sense and use gravity to move vertically within the sediment.
Aquatic Microbial Ecology | 2012
João Serôdio; João Ezequiel; Alexandre Barnett; Jean-Luc Mouget; Vona Méléder; Martin Laviale; Johann Lavaud
Journal of Experimental Marine Biology and Ecology | 2015
João Ezequiel; Martin Laviale; Silja Frankenbach; Paulo Cartaxana; João Serôdio
Aquatic Microbial Ecology | 2013
Paulo Cartaxana; Nuno Domingues; Sónia Cruz; Bruno Jesus; Martin Laviale; João Serôdio; J. Marques da Silva
Marine Biology | 2016
Martin Laviale; Silja Frankenbach; João Serôdio
Aquatic Toxicology | 2015
Sandra Kim Tiam; Martin Laviale; Agnès Feurtet-Mazel; Gwilherm Jan; Patrice Gonzalez; Nicolas Mazzella; Soizic Morin
Biotechnology for Biofuels | 2017
Quentin Béchet; Martin Laviale; Nicolas Arsapin; Hubert Bonnefond; Olivier Bernard